GENERAL DESIGN CONSIDERATIONS

- 1. WHERE PAVEMENT WIDENING IS REQUIRED, THE APPROPRIATE WIDENING IS ADDED TO THE LANE WIDTH WHEN CALCULATING THE SUPERELEVATION RUNOFF LENGTH (Lr).
- 2. THE COMPUTED SUPERELEVATION RUNOFF LENGTH (Lr) IS ROUNDED UP TO THE NEAREST FOOT.
- 3. WHEN THE SUPERELEVATION RUNOFF LENGTH (Lr) IS CALCULATED, IT MUST BE COMPARED WITH THE MINIMUM VALUE LISTED IN THE APPROPRIATE COLUMN ON THE RELATIVE GRADIENT TABLE.
- 4. TANGENT RUNOUT (Lt) IS ALWAYS ACHIEVED OUTSIDE OF THE SUPERELEVATION RUNOFF SECTION (Lr).
- 5. NO PAVEMENT WIDENING IS REQUIRED FOR URBAN ROADWAYS.
- 6. PAVEMENT WIDENING IS APPLIED ONLY WHEN CALCULATED WIDENING (w) IS EQUAL TO OR GREATER THAN 2 FEET. SEE PAGE 803.05 FOR DETAIL.
- 7. WHEN CALCULATING WIDENING (w) FOR MULTI-LANE RURAL ROADWAYS, WIDENING IS FIRST CALCULATED USING THE SINGLE LANE WIDTH FOR "W".
- 9. CALCULATED WIDENING IS ROUNDED UP TO THE NEAREST 0.1 FOOT.
- 10. CURVES WITH SPIRAL CURVE TRANSITIONS MUST HAVE A MINIMUM SUPERELEVATION RUNOFF LENGTH (Lr) EQUAL TO 2 SECONDS OF TRAVEL TIME AT THE ROADWAY'S DESIGN SPEED AS NOTED IN THE RELATIVE GRADIENT TABLE.
- 11. THE MINIMUM LENGTH OF CURVE SHOULD EQUAL THE LENGTH OF SUPERELEVATION TRANSITION OR Lr. THIS IS TO ALLOW SUFFICIENT DEVELOPMENT OF THE FULL SUPERELEVATED SECTION OF PAVEMENT WHICH SHOULD BE A MINIMUM LENGTH OF 1/3 THE TRANSITION Lr.
- 12. REVERSE CURVES SHOULD BE SEPARATED BY A TANGENT OF SUFFICENT LENGTH TO ALLOW THE FULL Lr AND Lt FOR EACH CURVE. IF THIS IS NOT POSSIBLE A MINIMUM LENGTH OF TANGENT SHOULD ALLOW FOR THE FULL Lr FOR EACH CURVE.
- 13. REVERSE CURVES THAT MEET AT A PRC SHOULD HAVE A CURVE LENGTH THAT ALLOWS ADEQUATE DEVELOPMENT OF THE FULL SUPERELEVATED SECTION OF PAVEMENT FOR EACH CURVE.
- 14. THE SEPARATE CURVES THAT ARE COMBINED TO CREATE THE COMPOUND CURVE, SHOULD BE OF SUFFICIENT LENGTH TO ALLOW ADEQUATE DEVELOPMENT OF THE FULL SUPERELEVATION ON EACH CURVE.

MAXIMUM RADIUS FOR USE OF A SPIRAL CURVE TRANSITION

DESIGN SPEED (mph)	MAXIMUM RADIUS (ft)
20	203
25	317
30	456
35	620
40	810
45	1025
50	1265
55	1531
60	1822
65	2138
70	2479
75	2846
80	3238

MAXIMUM LENGTH OF SPIRAL

$$L_{s,max} = \sqrt{24 (p_{max}) R}$$

 $L_{s,max} = MAXIMUM LENGTH OF SPIRAL, ft$

max = MAXIMUM LATERAL OFFSET BETWEEN THE TANGENT AND CIRCULAR CURVE (3.3 ft)

R = RADIUS OF CIRCULAR CURVE, ft