Design	Stopping Sight Distance on Grades					
Speed	Downgrades			Upgrades		
(mph) **	3%	6%	9%	3%	6%	9%
15	80	82	85	75	74	73
20	116	120	126	109	107	104
25	158	165	173	147	143	140
30	205	215	227	200	184	179
35	257	271	287	237	229	222
40	315	333	354	289	278	269
45	378	400	427	344	331	320
50	446	474	507	405	388	375
55	520	553	593	469	450	433
60	598	638	686	538	515	495
65	682	728	785	612	584	561
70	771	825	891	690	658	631
75	866	927	1003	772	736	704

When a highway is on a grade, the sight distances in the table below shall be used. *

TABLE 2D-2 STOPPING SIGHT DISTANCE ON GRADES(See 2011 AASHTO Green Book, Chapter 3, Section 3.2.2, page 3-5)**For all tables, use design speed if available, if not use legal speed.

Connection grades are to provide for a smooth tie-in with the mainline edge of pavement in accordance with Appendix F, Section 2-INTERSECTING CROSS ROAD GRADES and are to provide for adequate sight distance.

Current practice is to eliminate scuppers on most bridge designs. For this reason a minimum gradient of 0.5 percent is desirable to facilitate surface run-off. There will be instances where flatter gradients are required, through vertical curves, long water crossings, etc.; therefore, the water should be removed by means of inlets in lieu of open scuppers. Gradients are to be computed to as few decimal places as possible and should be in numbers evenly divisible by four, where feasible.

All grades are to be checked, as accurately as possible at this stage. See GS standards or proper minimum vertical clearances at underpasses and overpasses.

Minimum vertical clearances for structures or limits of work at grade crossing of railroads are to be obtained from the Department of Rail and Public Transportation.

Drainage of the existing terrain and adequate cover for drainage structures are also important factors to be considered in designing grades.

Proposed grades for roadside ditches and/or special design ditches are to be shown on corresponding profile sheet. See Chapter 7 of VDOT <u>Drainage Manual</u>.

Rev. 1/16