

### **DEPARTMENT OF TRANSPORTATION**

1401 EAST BROAD STREET RICHMOND, VIRGINIA 23219-2000

David S. Ekern, P.E.

January 30, 2007

### **MEMORANDUM**

To: All Holders of the Virginia Department of Transportation's 2001 Road and Bridge Standards

The current design standards for Transition Curves (TC-5.01 and TC-5.04) have been revised and the attached revision documents are to be added to your copy of the VDOT <u>2001 Road and Bridge Standards</u>. The revision updates specific terminology in the TC-5.01 Standards to conform to the terminology used in the AASHTO 2004 <u>A Policy on Geometric Design of Highways and Streets</u> ("Green Book"). These changes include:

- The "Crown Runoff" (CR) has been changed to "Tangent Run out" (Lt). This term denotes the transition distance from normal crown to the 0% grade on the high side of the superelevation.
- The "Length of Spiral" (LS) has been changed to "Super Runoff" (Lr). This term denotes the transition distance from 0% grade on the high side of the superelevation to full superelevation.

In addition to these changes, all references to Appendix A of the VDOT <u>Road Design Manual</u> have been revised to reference Chapter 3 of the AASHTO Green Book. An insertable sheet will not be required in plan assemblies for this revision. To avoid confusion, the old TC-5 Standard has also been revised to reflect the AASHTO Green Book terminology.

If you have any questions or comments regarding the listed revisions to this publication, please contact Steve Van Cleef of the Standards and Special Design Section at (804) 786-2532.

Sincerely,

Mohammad Mirshahi, P.E. State Location and Design Engineer

### STANDARD SYMBOLS

| LOCATION BALIGNMENT ON WHICH THE PROPOSED RIGHT-OF-WAY AND CONSTRUCTION IS BASED.                   |
|-----------------------------------------------------------------------------------------------------|
| STANDARD PAVEMENTTHE TYPICAL PAVEMENT SECTION TO BE SHOWN ON THE ROAD PLANS.                        |
| P.CPOINT OF BEGINNING OF BASELINE CIRCULAR CURVE.                                                   |
| P.TPOINT OF ENDING OF BASELINE CIRCULAR CURVE.                                                      |
| P.C.CPOINT OF BASELINE COMPOUND CURVATURE.                                                          |
| P.R.CPOINT OF BASELINE REVERSE CURVE.                                                               |
| T.SPOINT OF CHANGE FROM TANGENT TO TRANSITION CURVE.(TANGENT TO SPIRAL)                             |
| S.CPOINT OF CHANGE FROM TRANSITION CURVE TO CIRCULAR CURVE. (SPIRAL TO CIRCULAR)                    |
| C.SPOINT OF CHANGE FROM CIRCULAR CURVE TO TRANSITION CURVE. (CIRCULAR TO SPIRAL)                    |
| S.TPOINT OF CHANGE FROM TRANSITION CURVE TO TANGENT. (SPIRAL TO TANGENT)                            |
| RADIUSRADIUS OF BASELINE CIRCULAR CURVE.                                                            |
| DVAPPROXIMATE MAXIMUM SAFE SPEED IN MILES PER HOUR USING STANDARD RATE OF SUPER                     |
| ELEVATION.                                                                                          |
| NCAPPROXIMATE MAXIMUM SAFE SPEED IN MILES PER HOUR WITH NO SUPERELEVATION.                          |
| FACTORS APPLY ONLY TO URBAN LOW SPEED CONDITIONS.                                                   |
| LrLENGTH OF TRANSITION CURVE MEASURED ALONG BASELINE. WHERE NO TRANSITION CURVE                     |
| IS APPLIED Lr IS LENGTH OF SUPERELEVATION RUNOFF SECTION.                                           |
| W OR PWWIDTH OF STANDARD PAVEMENT.                                                                  |
| ZTDISTANCE FROM TRANSITIONED BASELINE TO EDGES OF TRANSITIONED PAVEMENT $(rac{W}{2} + rac{W}{2})$ |
| wMAXIMUM TOTAL PAVEMENT WIDENING.                                                                   |
| ERATE OF SUPERELEVATION.                                                                            |
| FSAFE SIDE FRICTION FACTOR.                                                                         |
| SAMOUNT OF SUPERELEVATION TO BE APPLIED TO THE BASELINE GRADE TO OBTAIN THE                         |
| ELEVATIONS OF THE EDGES OF TRANSITIONED PAVEMENT.                                                   |
| CDIFFERENCE IN ELEVATION BETWEEN BASELINE (CENTER) AND EDGE OF PAVEMENT FOR                         |
| STANDARD PAVEMENT CROWN.                                                                            |
| LtSTANDARD PAVEMENT CROWN TRANSITION OR TANGENT RUNOUT SECTION.                                     |
| CPCHORD POINT (1/10 INCREMENTS OF TRANSITION CURVE).                                                |
| NPCNORMAL PAVEMENT CROWN.                                                                           |
|                                                                                                     |

ALL DISTANCES (HORIZONTAL AND VERTICAL) ARE MEASURED IN FEET.

SPECIFICATION REFERENCE TRANSITION CURVES FOR RURAL AND URBAN HIGHWAYS AND STREET CONDITIONS

REV. 1/07

## URBAN CONDITION

URBAN CONDITIONS APPLY TO URBAN <u>STREET</u> SYSTEMS AND ANY OTHER ROAD WITH PRESENT OR FUTURE URBAN STREET OPERATING CONDITIONS.

THESE TABLES CONTAIN SUPERELEVATION RATES AND TRANSITION LENGTHS FOR STANDARD URBAN PAVEMENT WIDTHS THOUGH A RANGE OF CURVES AND DESIGN VELOCITIES CONSIDERED MOST LIKELY TO BE USED IN URBAN ROAD DESIGN.

DEFINITIONS FOR THE STANDARD SYMBOLS USED THROUGHOUT THESE TABLES ARE FOUND ON SHEET 801.01.

A TABLE FOR "LOW SPEED URBAN" DESIGNS IS ON SHEET 801.20 WITH A RANGE OF STANDARD PAVEMENT WIDTHS (W), TRANSITION LENGTHS (Lr), AND RADII OF CURVE WHEN SUPERELEVATED BY AN AMOUNT EQUAL TO THE NORMAL CROWN AND THE APPROXIMATE MAXIMUM SAFE SPEEDS (DV) AFFORDED THEREBY. VALUES IN THIS TABLE CAN BE USED ON STREETS WITH OPERATING SPEEDS LESS THAN OR EQUAL TO 45 MPH. ALSO SHOWN ARE THE APPROXIMATE MAXIMUM SAFE SPEEDS (NC) WITH NO SUPERELEVATION. VALUES FOR (NC) CAN BE USED ON URBAN ARTERIAL, COLLECTOR, AND LOCAL STREETS.

FOR MINIMUM DESIGN FACTORS FOR VARIOUS DESIGN SPEEDS FOR URBAN CONDITIONS SEE SHEETS 801.21 THRU 801.29

WHEN URBAN CONDITIONS APPLY THERE <u>WILL</u> BE NO BASELINE TRANSITION OR PAVEMENT WIDENING. THE LENGTH OF SUPERELEVATION RUNOFF (Lr) DETERMINES THE LENGTH OF SUPERELEVATION TRANSITION THROUGH WHICH THE OUTER EDGE OF PAVEMENT IS RAISED ABOVE THE BASELINE GRADE TO A MAXIMUM OF E  $(\frac{W}{2})$ . SEE SHEET 801.06 FOR A GRAPHICAL ILLUSTRATION OF THE APPLICATION OF THIS CORRECTION.

FOR CURVE RADII NOT LISTED IN TABLES REFER TO SHEET 801.18 TO CALCULATE TRANSITION LENGTHS (Lr).

Lr SHOULD BE SHOWN ON THE PLANS FOR ALL CURVES.

E SHOULD BE SHOWN ON THE PLANS FOR ALL CURVES WITH URBAN STREET CONDITIONS.

FOR GRAPHICAL ILLUSTRATION OF DESIGN SUPERELEVATION RATES FOR URBAN CONDITIONS SEE SHEET 801.15.

FOR ADDITIONAL GENERAL INSTRUCTIONS (BOTH URBAN AND RURAL) SEE SHEET 801.04.

EXPLANATION OF TABLES AND INSTRUCTIONS FOR USE URBAN CONDITION

## RURAL CONDITION

RURAL CONDITIONS APPLY TO INTERSTATE, ARTERIAL, PRIMARY AND SECONDARY SYSTEMS OR TO ANY OTHER ROAD WITH RURAL TYPE DESIGN AND OPERATING CONDITIONS.

THESE TABLES CONTAIN SUPERELEVATION AND WIDENING CORRECTIONS FOR STANDARD RURAL PAVEMENT WIDTHS THROUGH A RANGE OF RADII AND DESIGN VELOCITIES CONSIDERED MOST LIKELY TO BE USED IN RURAL HIGHWAY DESIGN.

DEFINITIONS FOR THE STANDARD SYMBOLS USED THROUGHOUT THESE TABLES ARE FOUND ON SHEET 801.01.

FOR MINIMUM DESIGN FACTORS FOR VARIOUS DESIGN SPEEDS FOR RURAL CONDITIONS SEE SHEETS 801.30 THRU 801.40.

ON CURVES WITH GREATER THAN 2865 FT RADIUS THERE WILL BE NO SPIRAL TRANSITION OR PAVEMENT WIDENING. PAVEMENT WILL BE SUPERELEVATED BY AN AMOUNT EQUAL TO THE RATE SHOWN IN THE TABLES. SEE SHEET 801.06 FOR A GRAPHICAL ILLUSTRATION OF THE APPLICATION OF THIS CORRECTION.

ON CURVES WITH PAVEMENT WIDTHS OF 24'OR WIDER AND A RADIUS OF 881 FT. OR GREATER, THERE WILL BE NO SPIRAL TRANSITION OR PAVEMENT WIDENING. PAVEMENT WILL BE SUPERELEVATED BY AN AMOUNT EQUAL TO THE RATE SHOWN IN THESE TABLES.

FOR CURVE RADII NOT LISTED IN TABLES REFER TO SHEET 801.18 TO CALCULATE SUPERELEVATION RUNOFF LENGTHS (Lr) AND PAVEMENT WIDENING (w).

Lr AND E SHOULD BE SHOWN ON THE PLANS FOR ALL CURVES ..

FOR GRAPHICAL ILLUSTRATION OF DESIGN SUPERELEVATION RATES FOR RURAL CONDITIONS SEE SHEET 801.16.

FOR ADDITIONAL GENERAL INSTRUCTIONS (BOTH URBAN AND RURAL) SEE SHEET 801.04.

EXPLANATION OF TABLES AND INSTRUCTIONS FOR USE RURAL CONDITION

VIRGINIA DEPARTMENT OF TRANSPORTATION

REV. 1/07 801.03

## GENERAL CONDITION

ALL ORIGINAL CROSS SECTIONS SHALL BE TAKEN FROM THE BASELINE AT STATIONS, PLUS FIFTIES, AND UNUSUAL BREAKS IN THE GROUND AS ON TANGENT ALIGNMENT.

WHERE A PART OR ALL OF A SUPERELEVATION TRANSITION CURVE FALLS ON A VERTICAL CURVE, ELEVATIONS ON THE VERTICAL CURVE SHOULD BE COMPUTED FOR THE POSITIONS GIVEN ON SHEET 801.12 FOR CROWN TRANSITIONS, SHEET 801.13 FOR URBAN PROJECTS AND SHEET 801.14 FOR RURAL PROJECTS. THESE ELEVATIONS AND PLUSES SHOULD BE SHOWN ON THE PLANS FOR THE CONVENIENCE OF THE SURVEY PARTY IN STAKING OUT THE PROJECT. THROUGHOUT THESE SECTIONS OF THE GRADE, ELEVATIONS AT EVEN STATIONS AND PLUS FIFTIES SHOULD BE OMITTED.

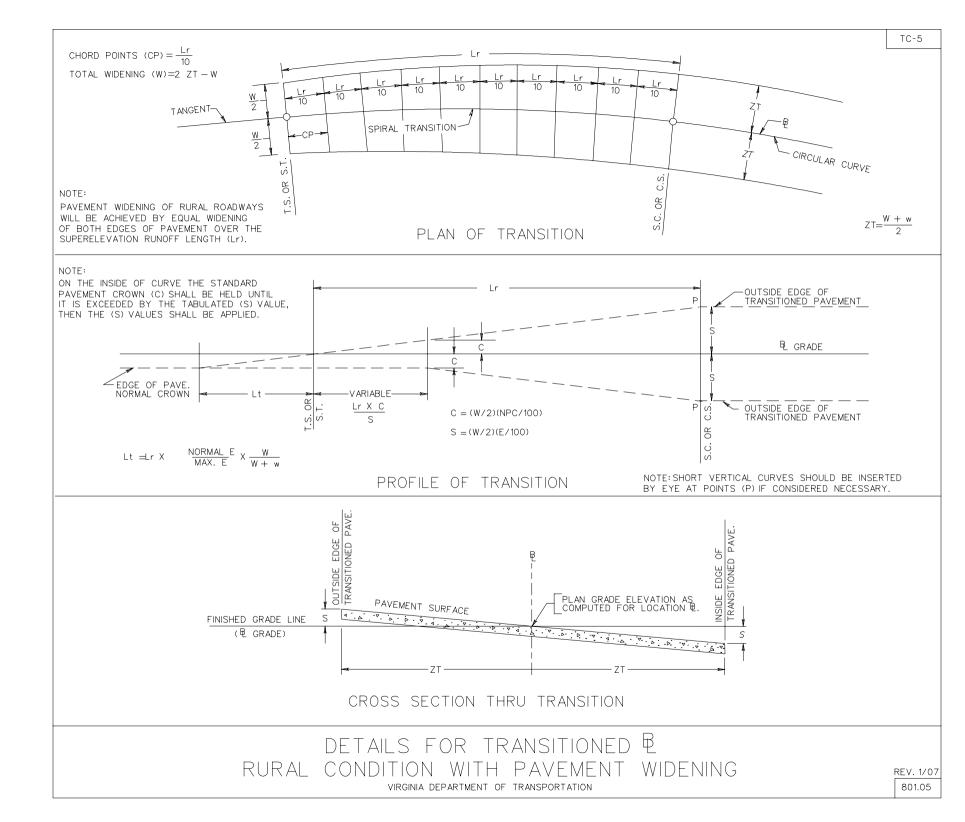
SLOPE STAKES SHOULD BE SET AT THE POSITIONS ON THE TRANSITION GIVEN ON SHEETS 801.12, 801.13 AND 801.14 AND GROUND CROSS SECTIONS TAKEN AT THESE POSITIONS OMITTING THE STATIONS AND PLUS FIFTIES THROUGHOUT THE TRANSITION. IF UNUSUAL BREAKS IN THE GROUND OCCUR, ADDITIONAL SECTIONS SHOULD, OF COURSE, BE TAKEN. ADDITIONAL SECTIONS SHOULD ALSO BE TAKEN WHERE LOCATION IS THROUGH ROCK CUT IN ANTICIPATION OF UNUSUAL BREAKAGE WHICH MAY OCCUR DURING CONSTRUCTION.

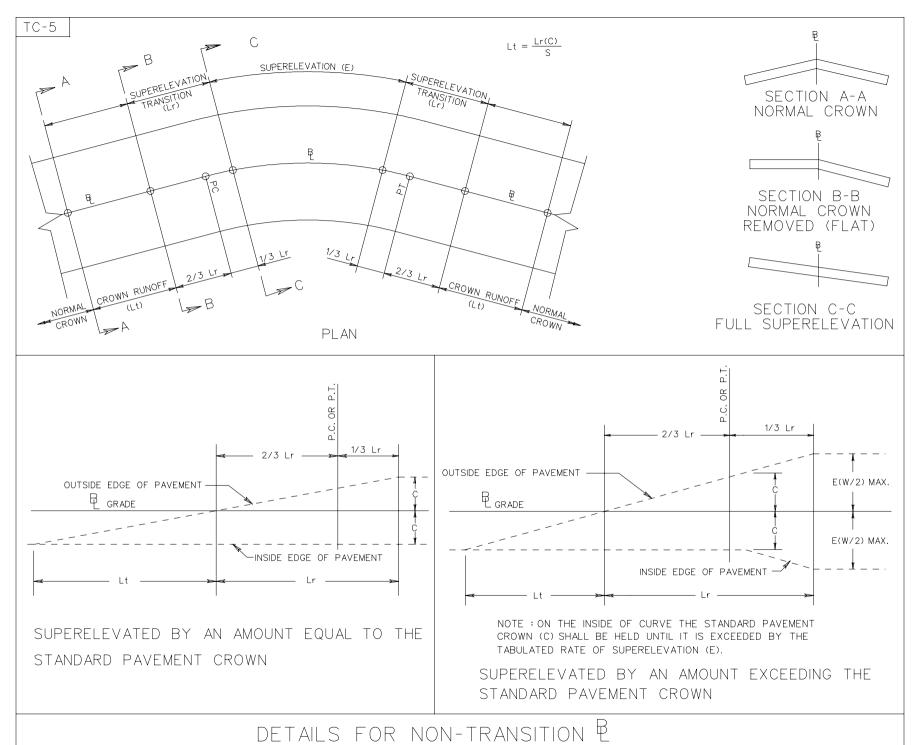
AFTER ROUGH GRADING HAS BEEN DONE, FINE GRADING (BLUE TOP) AND FORM STAKES SHOULD BE SET AT THE POSITIONS GIVEN ON SHEET 801.12 FOR CROWN TRANSITIONS, SHEET 801.13 FOR URBAN PROJECTS OR AS GIVEN ON SHEET 801.14 FOR RURAL PROJECTS.

FINAL CROSS SECTIONS SHOULD, OF COURSE, BE TAKEN AT THOSE POSITIONS AT WHICH THE SLOPE STAKE SECTIONS WERE TAKEN. WHERE UNUSUAL BREAKAGE IN ROCK OCCURS AND THIS WAS NOT ANTICIPATED, ADDITIONAL FINAL SECTIONS SHOULD BE TAKEN AND ORIGINAL GROUND SECTIONS INTERPOLATED.

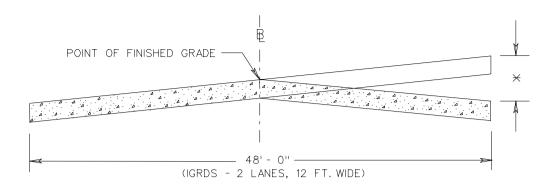
BASELINE STAKES SHOULD BE SET AT ALL P.C.'S, P.T.'S, T.S.'S, S.T.'S, S.C.'S, AND C.S.'S IN STAKING OUT ALIGNMENT, BUT SLOPE STAKES NEED NOT BE SET NOR CROSS SECTIONS TAKEN AT P.C.'S OR P.T.'S EXCEPT WHERE CALLED FOR IN THE ACCOMPANYING TABLES. THE TRANSITION WILL TAKE ITS FORM FROM THE POSITIONS GIVEN ON SHEETS 801.13 AND 801.14.

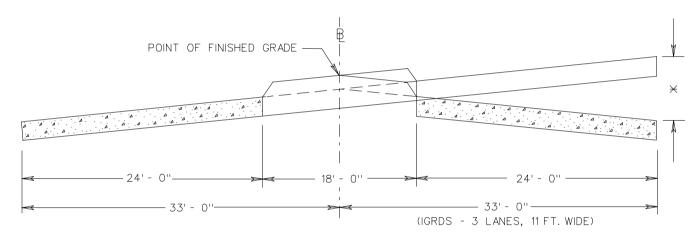
THE RIGHT OF WAY SHALL, IN ALL CASES, BE REFERENCED FROM THE BASELINE.


THE DESIGNER SHOULD AVOID SITUATIONS NECESSITATING REVERSE CURVES AND CURVES WITH OVERLAPPING TRANSITIONS WHERE POSSIBLE.


A DESIGN EXCEPTION IS NOT REQUIRED WHEN USING VALUES FROM SHEETS 801.21 THRU 801.40 SINCE THESE TABLES WERE DERIVED WITHIN AASHTO GUIDELINES.

ALL TANGENT RUNOUT SECTION VALUES LISTED IN THE TABLES HAVE BEEN ROUNDED UP TO THE NEAREST FOOT. ALL Lt VALUES ARE BASED ON A 2% CROWN.

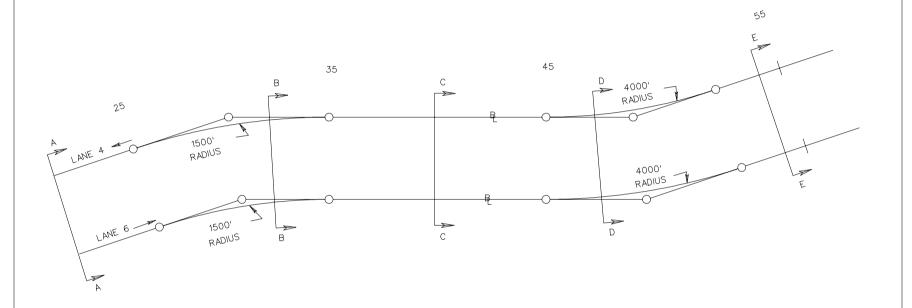

EXPLANATION OF TABLES AND INSTRUCTIONS FOR USE GENERAL CONDITION


801.04 VIRGINIA DEPARTMENT OF TRANSPORTATION

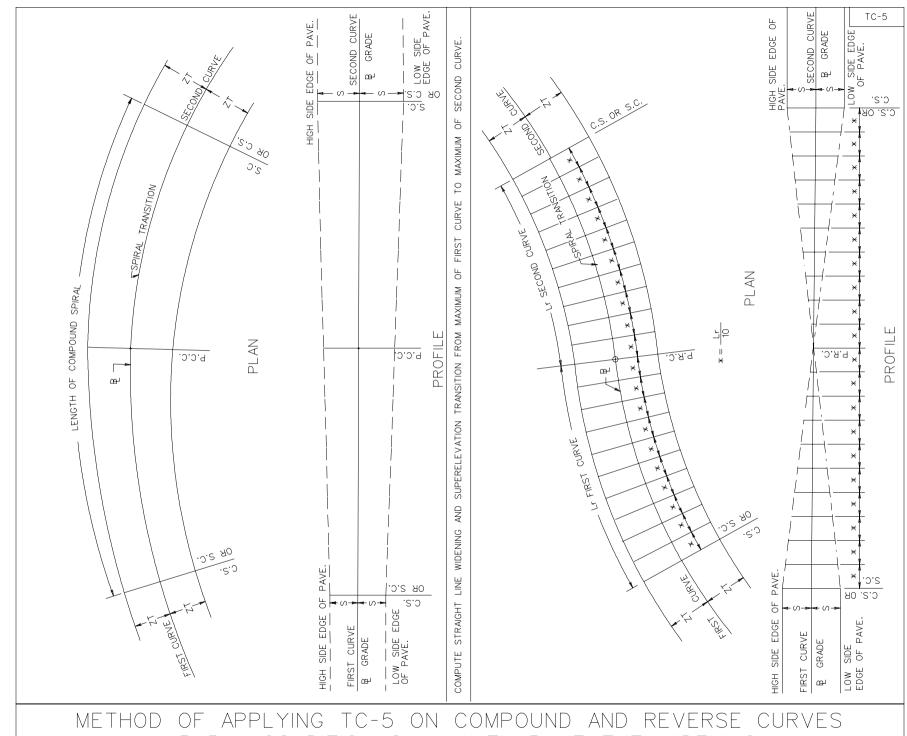




REV. 1/07 URBAN CONDITIONS AND RURAL CONDITIONS WITHOUT PAVEMENT WIDENING 801.06







\* THE ELEVATION DIFFERENTIAL BETWEEN NORMAL CROWN AND MAXIMUM SUPERELEVATION, RELATIVE TO THE BASELINE PROFILE.

ADDITIONAL INFORMATION MAY BE OBTAINED FROM A POLICY ON GEOMETRIC DESIGN OF HIGHWAYS AND STREETS (AASHTO) BOOK, CHAPTER III - ELEMENTS OF DESIGN (SUPERELEVATION RUNOFF).

ON STANDARD TC-5ULS, TC-5U , AND TC-5R (WITHOUT PAVEMENT WIDENING) SUPERELEVATED CURVES, POSITION THE Lr TWO THIRDS (2/3) ON THE TANGENT AND ONE THIRD (1/3) INTO THE CURVE. STATIONS AND ELEVATIONS FOR THESE TRANSITIONS WILL NEED TO BE COMPUTED FOR ALL CHORD POINTS AND SHOWN ON THE PROFILES.



EXAMPLE FOR FOUR LANE ROADWAYS



RURAL CONDITION WIDENING

VIRGINIA DEPARTMENT OF TRANSPORTATION

REV. 1/07 801.11

## TRANSITION TABLE

| LENGTH OF TANGENT RUNOUT (Lt) | START/END<br>OF<br>SUPERELEVATION<br>RUNOFF<br>SECTION | START/END | NORMAL<br>CROWN |     |     |     |
|-------------------------------|--------------------------------------------------------|-----------|-----------------|-----|-----|-----|
| (20)                          | (Lr)                                                   | 1         | 4               |     |     |     |
| 220                           | 0                                                      | 44        | 88              | 132 | 176 | 220 |
| 200                           | 0                                                      | 40        | 80              | 120 | 140 | 200 |
| 180                           | 0                                                      | 36        | 72              | 108 | 144 | 180 |
| 160                           | 0                                                      | 32        | 64              | 96  | 128 | 160 |
| 140                           | 0                                                      | 28        | 56              | 84  | 112 | 140 |
| 120                           | 0                                                      | 24        | 48              | 72  | 96  | 120 |
| 100                           | 0                                                      | 20        | 40              | 60  | 80  | 100 |
| 90                            | 0                                                      | 18        | 36              | 54  | 72  | 90  |
| 80                            | 0                                                      | 16        | 32              | 48  | 64  | 80  |
| 60                            | 0                                                      | 15        | 30              | 45  |     | 60  |
| 40                            | 0                                                      | 20        |                 |     |     | 40  |

#### NOTE:

TABLE LISTS POSTIONS ON TRANSITIONS AT WHICH SLOPE STAKES SHOULD BE SET, CONSTRUCTION AND FINAL CROSS-SECTIONS TAKEN, FINE GRADING STAKES (BLUE TOP) SET, AND FORM STAKES SET (CONCRETE PAVEMENT ONLY).

SUPERELEVATION RUNOFF (Lr) / TANGENT RUNOUT (Lt) TABLE

# URBAN CONDITIONS RURAL CONDITIONS WITHOUT PAVEMENT WIDENING

FOR USE WITH FLEXIBLE AND CONCRETE PAVEMENT (Lr POSITIONED 2/3 ±0N TANGENT, 1/3 ±0N CURVE)

| LENGTH OF SUPERELEVATION RUNOFF SECTION RUNO |      |                  |     | DISTANCE IN |     |      |    | P.C.<br>OR<br>P.T. | DIST<br>P.C | FULL<br>SUPER<br>ELEVATION<br>(E) |     |     |
|----------------------------------------------|------|------------------|-----|-------------|-----|------|----|--------------------|-------------|-----------------------------------|-----|-----|
| (Lr)                                         | (Lt) | 1                | 2   | 3           | 4   | 5    | 6  |                    | 7           | 8                                 | 9   |     |
| 480                                          | 320  | 272              | 224 | 176         | 128 | 80   | 32 | STAKE              | 16          | 64                                | 112 | 160 |
| 460                                          | 307  | 261              | 215 | 169         | 123 | 77   | 31 | STAKE              | 15          | 61                                | 107 | 153 |
| 440                                          | 293  | 249              | 205 | 161         | 117 | 73   | 29 | STAKE              | 15          | 59                                | 103 | 147 |
| 420                                          | 280  | 238              | 196 | 154         | 112 | 70   | 28 | STAKE              | 14          | 56                                | 98  | 140 |
| 400                                          | 267  | 227              | 187 | 147         | 107 | 67   | 27 | STAKE              | 13          | 53                                | 93  | 133 |
| 380                                          | 253  | 215              | 177 | 139         | 101 | 63   | 25 | STAKE              | 13          | 51                                | 89  | 127 |
| 360                                          | 240  | 204              | 168 | 132         | 96  | 60   | 24 | STAKE              | 12          | 48                                | 84  | 120 |
| 340                                          | 227  | 193              | 159 | 125         | 91  | 57   | 23 | STAKE              | 11          | 45                                | 79  | 113 |
| 320                                          | 213  | 181              | 149 | 117         | 85  | 53   | 21 | STAKE              | 11          | 43                                | 75  | 107 |
| 300                                          | 200  | 170              | 140 | 110         | 80  | 50   | 20 | STAKE              | 10          | 40                                | 70  | 100 |
| 280                                          | 187  | 159              | 131 | 103         | 75  | 47   | 19 | STAKE              | 9           | 37                                | 65  | 93  |
| 260                                          | 173  | 147 ×            | 121 | 95 ×        | 69  | 43 × | 17 | STAKE *            | 9           | 35 ×                              | 61  | 87  |
| 240                                          | 160  | 136 ×            | 112 | 88 X        | 64  | 40 * | 16 | STAKE *            | 8           | 32 ×                              | 56  | 80  |
| 220                                          | 147  | 125 <sup>Ж</sup> | 103 | 81 ×        | 59  | 37 × | 15 | STAKE *            | 7           | 29 X                              | 51  | 73  |
| 200                                          | 133  | 113 ×            | 93  | 73 ×        | 53  | 33 × | 13 | STAKE *            | 7           | 27 *                              | 47  | 67  |
| 180                                          | 120  | 102 <sup>Ж</sup> | 84  | 66 ×        | 48  | 30 × | 12 | STAKE *            | 6           | 24 X                              | 42  | 60  |
| 160                                          | 107  | 91 <sup>Ж</sup>  | 75  | 59 ×        | 43  | 27 × | 11 | STAKE *            | 5           | 21 *                              | 37  | 53  |

#### NOTE :

TABLE GIVING POSITIONS ON CURVES AT WHICH SLOPE STAKES SHOULD BE SET, CONSTRUCTION AND FINAL CROSS-SECTIONS TAKEN, FINE GRADING STAKES (BLUE TOP) SET, AND FORM STAKES SET (CONCRETE PAVEMENT ONLY).

\* DENOTES ADDITIONAL STAKING POSITIONS FOR USE WITH CONCRETE PAVEMENT ONLY.

TABLE I

## RURAL CONDITIONS WITH PAVEMENT WIDENING

FOR USE WITH FLEXIBLE AND CONCRETE PAVEMENT

| SUPERELEVATION<br>RUNOFF<br>SECTION | T.S.<br>OR<br>S.T. | DISTANCE IN FEET FROM T.S. OR S.T.  ALONG SPIRAL TRANSITION |    |      |     |       |     |       |     |       |     |  |  |
|-------------------------------------|--------------------|-------------------------------------------------------------|----|------|-----|-------|-----|-------|-----|-------|-----|--|--|
| (Lr)                                |                    | 1                                                           | 2  | 3    | 4   | 5     | 6   | 7     | 8   | 9     |     |  |  |
| 480                                 | 0                  | 48                                                          | 96 | 144  | 192 | 240   | 288 | 336   | 384 | 432   | 480 |  |  |
| 460                                 | 0                  | 46                                                          | 92 | 138  | 184 | 230   | 276 | 322   | 368 | 414   | 460 |  |  |
| 440                                 | 0                  | 44                                                          | 88 | 132  | 176 | 220   | 264 | 308   | 352 | 396   | 440 |  |  |
| 420                                 | 0                  | 42                                                          | 84 | 126  | 168 | 210   | 252 | 294   | 336 | 378   | 420 |  |  |
| 400                                 | 0                  | 40                                                          | 80 | 120  | 160 | 200   | 240 | 280   | 320 | 360   | 400 |  |  |
| 380                                 | 0                  | 38                                                          | 76 | 114  | 152 | 190   | 228 | 266   | 304 | 342   | 380 |  |  |
| 360                                 | 0                  | 36                                                          | 72 | 108  | 144 | 180   | 216 | 252   | 288 | 324   | 360 |  |  |
| 340                                 | 0                  | 34                                                          | 68 | 102  | 136 | 170   | 204 | 238   | 272 | 306   | 340 |  |  |
| 320                                 | 0                  | 32                                                          | 64 | 96   | 128 | 160   | 192 | 224   | 256 | 288   | 320 |  |  |
| 300                                 | 0                  | 30                                                          | 60 | 90   | 120 | 150   | 180 | 210   | 240 | 270   | 300 |  |  |
| 280                                 | 0                  | 28                                                          | 56 | 84   | 112 | 140   | 168 | 196   | 224 | 252   | 280 |  |  |
| 260                                 | 0                  | 26 X                                                        | 52 | 78 X | 104 | 130 * | 156 | 182 X | 208 | 234 X | 260 |  |  |
| 240                                 | 0                  | 24 X                                                        | 48 | 72 X | 96  | 120 X | 144 | 168 X | 192 | 216 X | 240 |  |  |
| 220                                 | 0                  | 22 Ж                                                        | 44 | 66 X | 88  | 110 * | 132 | 154 * | 176 | 198 X | 220 |  |  |
| 200                                 | 0                  | 20 Ж                                                        | 40 | 60 X | 80  | 100 × | 120 | 140 X | 160 | 180 X | 200 |  |  |
| 180                                 | 0                  | 18 X                                                        | 36 | 54 X | 72  | 90 X  | 108 | 126 X | 144 | 162 X | 180 |  |  |
| 160                                 | 0                  | 16 X                                                        | 32 | 48 X | 64  | 80 X  | 96  | 112 * | 128 | 144 X | 160 |  |  |

#### NOTE :

TABLE GIVING POSITIONS ON TRANSITION CURVES AT WHICH SLOPE STAKES SHOULD BE SET, CONSTRUCTION AND FINAL CROSS-SECTIONS TAKEN, FINE GRADING STAKES (BLUE TOP) SET, AND FORM STAKES SET (CONCRETE PAVEMENT ONLY).

\* DENOTES ADDITIONAL STAKING POSITIONS FOR USE WITH CONCRETE PAVEMENT ONLY.

TABLE 2

### CURVE WIDENING TABLES

#### SU DESIGN VEHICLE

| COMPONENT          | SIZE   |  |  |
|--------------------|--------|--|--|
| OVERALL WIDTH (u)  | 8.5 ft |  |  |
| WHEELBASE (L)      | 20 ft  |  |  |
| FRONT OVERHANG (A) | 4 ft   |  |  |

#### LATERAL CLEARANCE

| LANE WIDTH | CLEARANCE (C) |
|------------|---------------|
| 8 ft       | 1 ft          |
| 9 ft       | 1.5 ft        |
| 10 ft      | 2 ft          |
| 11 ft      | 2.5 ft        |
| 12 ft      | 3 ft          |
| 16 ft      | 5 ft          |

### IGRDS HA.TBL TABLES

### RELATIVE GRADIENTS

### EFFECTIVE WIDTHS

| NUMBER      |               | EF            | FECTIVE        | WIDTHS (       | W)             |                | EFFECTIVE           |
|-------------|---------------|---------------|----------------|----------------|----------------|----------------|---------------------|
| OF<br>LANES | 8 ft<br>LANES | 9 ft<br>LANES | 10 ft<br>LANES | 11 ft<br>LANES | 12 ft<br>LANES | 16 ft<br>LANES | WIDTH<br>FACTOR (f) |
| 1           | 8.0           | 9.0           | 10.0           | 11.0           | 12.0           | 16.0           | 1                   |
| 1.5         | 9.6           | 10.8          | 12.0           | 13.2           | 14.4           | 19.2           | 1.2                 |
| 2           | 12.0          | 13.5          | 15.0           | 16.5           | 18.0           | 24.0           | 1.5                 |
| 3           | 16.0          | 18.0          | 20.0           | 22.0           | 24.0           | 32.0           | 2                   |
| 4           | 32.0          | 36.0          | 40.0           | 44.0           | 48.0           | 64.0           | 4                   |
| 5           | 40.0          | 45.0          | 50.0           | 55.0           | 60.0           | 80.0           | 5                   |
| 6           | 48.0          | 54.0          | 60.0           | 66.0           | 72.0           | 96.0           | 6                   |
| 7           | 56.0          | 63.0          | 70.0           | 77.0           | 84.0           | 112.0          | 7                   |
| 8           | 64.0          | 72.0          | 80.0           | 88.0           | 96.0           | 128.0          | 8                   |

| DESIGN             |       | ATIVE<br>NT (rg) | MIN. TRANSITION<br>LENGTH IN FEET |       |  |  |  |
|--------------------|-------|------------------|-----------------------------------|-------|--|--|--|
| SPEED<br>VD<br>MPH | UP TO | 4 OR<br>MORE     | 2 SECOND RULE                     |       |  |  |  |
|                    | LANES | LANES            | URBAN                             | RURAL |  |  |  |
| 20                 | 0.75  | 1.14             | 100                               | 60    |  |  |  |
| 25                 | 0.71  | 1.07             | 100                               | 80    |  |  |  |
| 30                 | 0.67  | 1.00             | 100                               | 100   |  |  |  |
| 35                 | 0.63  | 0.93             | 120                               | 120   |  |  |  |
| 40                 | 0.58  | 0.86             | 120                               | 120   |  |  |  |
| 45                 | 0.54  | 0.81             | 140                               | 140   |  |  |  |
| 50                 | 0.50  | 0.75             | 160                               | 160   |  |  |  |
| 55                 | 0.47  | 0.69             | 180                               | 180   |  |  |  |
| 60                 | 0.45  | 0.67             | 180                               | 180   |  |  |  |
| 65                 | 0.41  | 0.62             | 200                               | 200   |  |  |  |
| 70                 | 0.40  | 0.60             | 220                               | 220   |  |  |  |

#### **DEFINITIONS**

- A FRONT OVERHANG OF DESIGN VEHICLE FROM APPROPRIATE TABLE.
- C LATERAL CLEARANCE OF DESIGN VEHICLE FROM APPROPRIATE TABLE.
- E SUPERELEVATION RATE IN DECIMAL FROM APPROPRIATE TABLE OR CALCULATED PER AASHTO METHOD 5.
- FA CALCULATED WIDTH OF OVERHANG FOR DESIGN VEHICLE.
- L WHEELBASE OF DESIGN VEHICLE FROM APPROPRIATE TABLE.
- U CALCULATED TRACK WIDTH OF DESIGN VEHICLE.

- Lr LENGTH OF SPIRAL OR SUPERELEVATION RUNOFF SECTION.
- Lt LENGTH OF TANGENT RUNOUT SECTION.
- M MULTIPLE LANE (2 + ) FACTOR.
- N NUMBER OF LANES.
- Pw PAVEMENT WIDTH.
- R RADIUS OF CURVE.
- rg RELATIVE GRADIENT FROM APPROPRIATE TABLE.

- u TRACK WIDTH OF DESIGN VEHICLE FROM APPROPRIATE TABLE.
- V<sub>D</sub> DESIGN VELOCITY.
- w CALCULATED WIDENING.
- W EFFECTIVE WIDTH FROM APPROPRIATE TABLE.
- WC CALCULATED TOTAL CURVE WIDTH.
- Wn WITDH OF LANE.
- Z CALCULATED EXTRA WIDTH ALLOWANCE.

### GENERAL DESIGN CONSIDERATIONS

- WHERE PAVEMENT WIDENING IS REQUIRED, THE APPROPRIATE WIDENING IS ADDED TO THE LANE WIDTH WHEN CALCULATING THE SUPERELEVATION RUNOFF SECTION (Lr).
- THE COMPUTED TRANSITION LENGTH (Lr) IS ROUNDED UP TO THE NEAREST TWENTY
  FOOT INCREMENT. COMPUTED LENGTHS THAT FALL ON THE TWENTY FOOT
  INCREMENT ARE NOT ROUNDED.
- 3. WHEN THE SUPERELEVATION RUNOFF SECTION (Lr) IS CALCULATED, IT MUST BE COMPARED WITH THE MINIMUM VALUE LISTED IN THE APPROPRIATE COLUMN ON THE RELATIVE GRADIENT TABLE.
- 4. TANGENT RUNOUT SECTION (Lt) IS ALWAYS ACHIEVED OUTSIDE OF THE TRANSITION.
- 5. NO PAVEMENT WIDENING IS REQUIRED FOR URBAN ROADWAYS.
- NO PAVEMENT WIDENING IS REQUIRED FOR RURAL ROADWAYS WITH A CURVE RADIUS GREATER THAN 2865 FEET.

- 7. NO PAVEMENT WIDENING IS REQUIRED FOR RURAL ROADWAYS WITH 12 FOOT WIDE LANES AND A CURVE RADIUS GREATER THAN 881 FEET.
- 8. PAVEMENT WIDENING IS APPLIED ONLY WHEN CALCULATED WIDENING (w) IS EQUAL TO OR GREATER THAN 2 FEET.
- 9. WHEN CALCULATING WIDENING (W) FOR MULTI-LANE RURAL ROADWAYS, WIDENING IS FIRST CALCULATED USING THE SINGLE LANE WIDTH FOR "W" AND THE ANSWER (W) IS THEN MUTIPLIED BY THE MULTIPLE LANE FACTOR (M). FOR FOUR LANE UNDIVIDED PAVEMENTS (48"), THE Lr IS 1.5 TIMES (M=1.5) THE CORRESPONDING LENGTH FOR TWO LANE HIGHWAYS; AND FOR SIX LANE UNDIVIDED PAVEMENTS (72"), THE Lr IS TWO TIMES (M=2) THE CORRESPONDING LENGTH FOR TWO LANE HIGHWAYS.
- 10. CALCULATED WIDENING IS ROUNDED UP TO THE NEAREST 0.1 FOOT.

## FORMULAS USED TO CALCULATE TRANSITION LENGTH (Lr) AND WIDENING (W)

Lr=(100WE)/rg (NO WIDENING REQUIRED)

Lr = [100(W + w/2) E]/rg (WIDENING REQUIRED)

$$U = u + R - \sqrt{R^2 - L^2}$$

$$Z = (V_D / \sqrt{R})$$

$$W = W_C - 2W_n$$

Lr=M[100(Pw/N +w/N) E]/rg (MULTI-LANE WIDENING REQUIRED)

$$F = \sqrt{R^2 + A(2L + A)} - R$$

$$W_C = N(U + C) + F + Z_A$$

FOR SOLVED PROBLEMS USING THIS METHODOLOGY, SEE THE EXAMPLES ON PAGE 801.19.

## METHODOLOGIES FOR CALCULATING TC-5 VALUES

REV. 1/07 801.18

VIRGINIA DEPARTMENT OF TRANSPORTATION

#### 

$$U = u + R - \sqrt{R^2 - L^2}$$

$$U = 8.5 + 1000 - \sqrt{(1000)^2 - (20)^2}$$

$$U = 8.70002$$

$$F_A = \sqrt{R^2 + A (2L + A)} - R$$

$$F_A = \sqrt{(1000)^2 + 4E 2(20) + 4J} - 1000$$

$$F_A = .087996$$

$$Z = (V_D / \sqrt{R})$$
  
 $Z = (50 / \sqrt{1000})$   
 $Z = 1.58$ 

$$W_C = 2 (U + C) + F_A + Z$$
  
 $W_C = 2(8.70002 + 2) + 0.08996 + 1.58$   
 $W_C = 23.0692$ 

$$w = W_C - 2W_n = 23.069 - 2(10) = 3.069$$

(R<2865 & w>2 THEREFORE WIDENING IS REQUIRED)
Lr = [100 (W +w/2) E] / rg
Lr = [100 (10 +3.068/2) .076] / 0.50
Lr = 175.56 (180 ROUNDED)

## RURAL EXAMPLE 72 FT PAVEMENT WIDTH (IGRDS - 3 LANES AT 12 FT)

## COMPUTE FOR 24' PAVEMENT WIDTH (IGRDS 1@ 12')

$$U = u + R - \sqrt{R^2 - L^2}$$

$$U = 8.5 + 600 - \sqrt{(600)^2 - (20)^2}$$

$$U = 8.8334$$

$$F_{A} = \sqrt{R^{2} + A (2L + A)} - R$$

$$F_{A} = \sqrt{(600)^{2} + 4[2(20) + 4] - 600}$$

$$F_{A} = .14665$$

$$Z = (V_D / \sqrt{R})$$
  
 $Z = (40 / \sqrt{600})$   
 $Z = 1.6329$ 

$$W_C = 2 (U + C) + F_A + Z$$
  
 $W_C = 2(8.8334 + 3.0) + .14665 + 1.632$   
 $W_C = 25.4464$ 

$$W = W_C - 2W_D = 25.4455 - 2(12) = 1.4464(1.5)$$

FOR 72' PAVEMENT WIDTH w = 3(1.5) = 4.5

## (R<881 & w>2 THEREFORE WIDENING IS REQUIRED)

Lr = M[100(Pw/N +w/N) E]/rg Lr = 2[100(72/6 +4.5/6) 0.077]/0.58 Lr = 2[100(12.75)0.77]/0.58Lr = 2(98.175/0.58)

Lr = 2(169.2672414)

Lr = 338.5344828 (ROUNDED TO 340)

### URBAN EXAMPLES

24 FT PAVEMENT WIDTH (IGRDS - 1 LANE AT 12 FT)

## 66 FT PAVEMENT WIDTH (IGRDS - 3 LANES AT 11 FT)

$$V_D = 40 \text{ MPH}$$
 R = 600 FT  
 $W_n = 22 \text{ FT}$  rg = 0.58  
F = 0.04 (4% PFR PAGE 801.25)

TC-5

|                 |     |      |       |       |                   | PAVEMENT WIDTH                                                                     |  |  |  |  |  |  |  |  |
|-----------------|-----|------|-------|-------|-------------------|------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| RADIUS          | E   | F    | DV    | NC    | W <u>≤</u> 72 FT. | W > 72 FT                                                                          |  |  |  |  |  |  |  |  |
| (FEET)          | (%) |      | (MPH) | (MPH) |                   | Lr (FEET)                                                                          |  |  |  |  |  |  |  |  |
| <u>&gt;</u> 975 | 2.1 | .161 | 45    | 45    | 140               |                                                                                    |  |  |  |  |  |  |  |  |
| 750             | 2.1 | .161 | 45    | 41    | 140               |                                                                                    |  |  |  |  |  |  |  |  |
| 700             | 2.1 | .164 | 44    | 40    | 120               |                                                                                    |  |  |  |  |  |  |  |  |
| 550             | 2.1 | .178 | 40    | 37    | 120               | NOTE:                                                                              |  |  |  |  |  |  |  |  |
| 475             | 2.1 | .186 | 38    | 35    | 120               | FOR PAVEMENTS WIDTHS GREATER THAN 72 FEET USE Lr VALUES DEVELOPED BY IGRDS WITH AN |  |  |  |  |  |  |  |  |
| 375             | 2.1 | .197 | 35    | 32    | 120               | ABSOLUTE MINIMUM Lr OF 90 FEET.                                                    |  |  |  |  |  |  |  |  |
| 300             | 2.1 | .211 | 32    | 30    | 100               |                                                                                    |  |  |  |  |  |  |  |  |
| 250             | 2.1 | .221 | 30    | 28    | 100               |                                                                                    |  |  |  |  |  |  |  |  |
| 200             | 2.1 | .240 | 27    | 25    | 100               |                                                                                    |  |  |  |  |  |  |  |  |
| 175             | 2.1 | .252 | 25    | 24    | 90                |                                                                                    |  |  |  |  |  |  |  |  |
| 100             | 2.1 | .290 | 21    | 20    | 90                |                                                                                    |  |  |  |  |  |  |  |  |
| 90              | 2.1 | .300 | 20    | 20    | 90                |                                                                                    |  |  |  |  |  |  |  |  |

SUMMARY OF STD. TC-5ULS (URBAN-LOW SPEED) DESIGN FACTORS

## DESIGN FACTORS FOR A DESIGN SPEED OF 20 MPH (URBAN) USING E= 4% MAX.

|              |     |      |        | TOND |        | MENT W  |       | 47. 1   | /////   |     |     |     |     |
|--------------|-----|------|--------|------|--------|---------|-------|---------|---------|-----|-----|-----|-----|
| RADIUS       | E   | 24   | FT     | 36   | FT     | 48      | FT    | 60      | FT      | 66  | FT  | 72  | FT  |
| (FEET)       | (%) | IGRD | S EQUI | L    | S (NUM | IBER OF | LANES | S AT LA | ANE WID | TH) |     |     |     |
|              |     | 1@   | 12'    | 1.5  | ⊉ 12'  | 2 @     | 12'   | 3 @     | 10'     | 3 @ | 11' | 3 @ | 12' |
|              |     | Lt   | Lr     | Lt   | Lr     | Lt      | Lr    | Lt      | Lr      | Lt  | Lr  | Lt  | Lr  |
| 20000        | 2.1 | 100  | 100    | 100  | 100    | 100     | 100   | 100     | 100     | 100 | 100 | 100 | 100 |
| 15000        | 2.1 | 100  | 100    | 100  | 100    | 100     | 100   | 100     | 100     | 100 | 100 | 100 | 100 |
| 10000        | 2.1 | 100  | 100    | 100  | 100    | 100     | 100   | 100     | 100     | 100 | 100 | 100 | 100 |
| 7000         | 2.1 | 100  | 100    | 100  | 100    | 100     | 100   | 100     | 100     | 100 | 100 | 100 | 100 |
| 5000         | 2.1 | 100  | 100    | 100  | 100    | 100     | 100   | 100     | 100     | 100 | 100 | 100 | 100 |
| 4000         | 2.1 | 100  | 100    | 100  | 100    | 100     | 100   | 100     | 100     | 100 | 100 | 100 | 100 |
| 3000         | 2.1 | 100  | 100    | 100  | 100    | 100     | 100   | 100     | 100     | 100 | 100 | 100 | 100 |
| 2500         | 2.1 | 100  | 100    | 100  | 100    | 100     | 100   | 100     | 100     | 100 | 100 | 100 | 100 |
| 2250         | 2.1 | 100  | 100    | 100  | 100    | 100     | 100   | 100     | 100     | 100 | 100 | 100 | 100 |
| 2000         | 2.1 | 100  | 100    | 100  | 100    | 100     | 100   | 100     | 100     | 100 | 100 | 100 | 100 |
| 1750         | 2.1 | 100  | 100    | 100  | 100    | 100     | 100   | 100     | 100     | 100 | 100 | 100 | 100 |
| 1500         | 2.1 | 100  | 100    | 100  | 100    | 100     | 100   | 100     | 100     | 100 | 100 | 100 | 100 |
| 1300         | 2.1 | 100  | 100    | 100  | 100    | 100     | 100   | 100     | 100     | 100 | 100 | 100 | 100 |
| 1150         | 2.1 | 100  | 100    | 100  | 100    | 100     | 100   | 100     | 100     | 100 | 100 | 100 | 100 |
| 1000         | 2.1 | 100  | 100    | 100  | 100    | 100     | 100   | 100     | 100     | 100 | 100 | 100 | 100 |
| 900          | 2.1 | 100  | 100    | 100  | 100    | 100     | 100   | 100     | 100     | 100 | 100 | 100 | 100 |
| 800          | 2.3 | 92   | 100    | 92   | 100    | 92      | 100   | 92      | 100     | 92  | 100 | 92  | 100 |
| 750          | 2.3 | 92   | 100    | 92   | 100    | 92      | 100   | 92      | 100     | 92  | 100 | 92  | 100 |
| 700          | 2.4 | 88   | 100    | 88   | 100    | 88      | 100   | 88      | 100     | 88  | 100 | 88  | 100 |
| 650          | 2.5 | 84   | 100    | 84   | 100    | 84      | 100   | 84      | 100     | 84  | 100 | 84  | 100 |
| 600          | 2.5 | 84   | 100    | 84   | 100    | 84      | 100   | 84      | 100     | 84  | 100 | 84  | 100 |
| 550          | 2.6 | 81   | 100    | 81   | 100    | 81      | 100   | 81      | 100     | 81  | 100 | 81  | 100 |
| 500          | 2.7 | 78   | 100    | 78   | 100    | 78      | 100   | 78      | 100     | 78  | 100 | 78  | 100 |
| 475          | 2.7 | 78   | 100    | 78   | 100    | 78      | 100   | 78      | 100     | 78  | 100 | 78  | 100 |
| 450          | 2.8 | 75   | 100    | 75   | 100    | 75      | 100   | 75      | 100     | 75  | 100 | 75  | 100 |
| 425          | 2.8 | 75   | 100    | 75   | 100    | 75      | 100   | 75      | 100     | 75  | 100 | 75  | 100 |
| 400          | 2.9 | 73   | 100    | 73   | 100    | 73      | 100   | 73      | 100     | 73  | 100 | 73  | 100 |
| 375          | 3.0 | 70   | 100    | 70   | 100    | 70      | 100   | 70      | 100     | 70  | 100 | 70  | 100 |
| 350          | 3.1 | 68   | 100    | 68   | 100    | 68      | 100   | 68      | 100     | 68  | 100 | 68  | 100 |
| 325          | 3.1 | 68   | 100    | 68   | 100    | 68      | 100   | 68      | 100     | 68  | 100 | 68  | 100 |
| 300          | 3.2 | 66   | 100    | 66   | 100    | 66      | 100   | 66      | 100     | 66  | 100 | 79  | 120 |
| 280          | 3.3 | 64   | 100    | 64   | 100    | 64      | 100   | 64      | 100     | 64  | 100 | 77  | 120 |
| 265          | 3.4 | 62   | 100    | 62   | 100    | 62      | 100   | 62      | 100     | 62  | 100 | 75  | 120 |
| 250          | 3.5 | 60   | 100    | 60   | 100    | 60      | 100   | 60      | 100     | 72  | 120 | 72  | 120 |
| 235          | 3.5 | 60   | 100    | 60   | 100    | 60      | 100   | 60      | 100     | 72  | 120 | 72  | 120 |
| 220          | 3.6 | 59   | 100    | 59   | 100    | 59      | 100   | 59      | 100     | 70  | 120 | 70  | 120 |
| 205          | 3.7 | 57   | 100    | 57   | 100    | 57      | 100   | 57      | 100     | 69  | 120 | 69  | 120 |
| 190          | 3.8 | 56   | 100    | 56   | 100    | 56      | 100   | 67      | 120     | 67  | 120 | 78  | 140 |
| 175          | 3.9 | 54   | 100    | 54   | 100    | 54      | 100   | 65      | 120     | 65  | 120 | 76  | 140 |
| 160          | 3.9 | 54   | 100    | 54   | 100    | 54      | 100   | 65      | 120     | 65  | 120 | 76  | 140 |
| 145          | 4.0 | 53   | 100    | 53   | 100    | 53      | 100   | 63      | 120     | 63  | 120 | 74  | 140 |
| 130          | 4.0 | 53   | 100    | 53   | 100    | 53      | 100   | 63      | 120     | 63  | 120 | 74  | 140 |
| <b>9</b> 127 | 4.0 | 53   | 100    | 53   | 100    | 53      | 100   | 63      | 120     | 63  | 120 | 74  | 140 |

NOTE:

Lt AND Lr VALUES IN FEET.

FOR PAVEMENT WIDTHS GREATER THAN 72 FEET USE LT VALUES DEVELOPED BY IGRDS WITH AN ABSOLUTE MINIMUM LT OF 100 FEET.

#### LEGEND

- C- RATE OF CHANGE OF SIDE FRICTION (f) IN FT./SEC.
- e- SUPERELEVATION RATE IN PERCENT.
- f- FRICTION FACTOR.
- Lr- LENGTH OF SUPERELEVATION RUNOFF SECTION.
- Lt- LENGTH OF TANGENT RUNOUT SECTION
- R- RADIUS OF CURVE.
- DV- DESIGN VELOCITY UTILIZING SUPERELEVATION.
- NC- MAXIMUM VELOCITY WITH NO SUPERELEVATION (NORMAL CROWN).

#### URBAN LOW SPEED DESIGN TABLE

| DV/NC | MAX. f | С    | Lr  |
|-------|--------|------|-----|
| 45    | 0.161  | 2.75 | 140 |
| 40    | 0.178  | 3.00 | 120 |
| 35    | 0.197  | 3.25 | 120 |
| 30    | 0.221  | 3.50 | 100 |
| 25    | 0.252  | 3.75 | 90  |
| 20    | 0.300  | 4.00 | 90  |

FRICTION FACTORS (f) FOR ODD VELOCITIES NOT LISTED SHOULD BE DERIVED BY INTERPOLATION.

FOR Lr LENGTHS FOR INTERMEDIATE VELOCITIES NOT LISTED IN TABLE USE THE Lr FOR NEXT LOWER VELOCITY IN TABLE.

#### GENERAL DESIGN CONSIDERATIONS

- WHEN "URBAN LOW SPEED" DESIGNS UTILIZE SUPERELEVATION, THEY WILL BE SUPERELEVATED BY AN AMOUNT EQUAL TO THE NORMAL CROWN (TYPICALLY 2%) AND THE APPROXIMATE MAXIMUM SAFE SPEED (DV) AFFORDED THEREBY.
- 2. WHEN "URBAN LOW SPEED DESIGN" WITH NO SUPERELEVATION, THE APPROXIMATE MAXIMUM SAFE SPEED (NC) IS CALCULATED USING A NEGATIVE NORMAL CROWN (TYPICALLY -2%).
- 3. WHEN THE CURVE IS SUPERELEVATED, THE Lr IS APPLIED IN THE SAME MANNER AS IN URBAN CONDITIONS WITH THE TANGENT RUNOUT SECTION (Lt) BEING EQUAL TO THE Lr VALUE. THE CROWN RUNOUT SECTION (Lt) IS ALWAYS ACHIEVED OUTSIDE OF THE TRANSITION (Lr).
- 4. PLEASE NOTE THAT THE RADIUS VALUES LISTED ON PAGE 801.20 HAVE BEEN ROUNDED UP TO THE NEAREST TWENTY FIVE FOOT INCREMENT.

#### EXAMPLES

 $DV = 21 \, mph$ 

e = +2.1 %

f = 300-[1/5(0.300-0.252)]=0.2904 (ROUND TO 0.29)

Lr = 47.2 f DV/C = 47.2(0.29)(21)/4 = 71.862 FT.

- 71.862 <90 THEREFORE Lr-90 FT.

Rmin. =  $(21)^2/15(0.021+0.29)=94.53376206$  FT.

NC = 37 mph

e = -2.1 %

f = 0.197-[2/5(0.197-0.178)]=0.1894 (ROUND TO 0.189)

Rmin. =  $(37)^2 / 15(-0.021 + 0.189) = 543.2539683$  FT.

| TC-5         | DESIG | GN F |     |        |         |        |        |       |       |        | 25    | MPH  |     |
|--------------|-------|------|-----|--------|---------|--------|--------|-------|-------|--------|-------|------|-----|
|              |       |      |     | (URB   | AN) (   | JSIN   | 3 E=   | 4 %   | MAX   | •      |       |      |     |
|              |       |      |     |        | F       | PAVEME | IW TM: | HTC   |       |        |       |      |     |
| RADIUS       | E     | 24   | FT  | 36 F   | Т       | 48 F   | T      | 60 F  | Ŧ     | 66 F   | T     | 72 F | · T |
| (FEET)       | (%)   |      | IGF | RDS EQ | UIVALEI | NTS (N | UMBER  | OF LA | NES A | T LANE | WIDTH | 1)   |     |
|              |       | 1@   | 12' | 1.5 @  | 12'     | 2 @    | 12'    | 3 @   | 10'   | 3 @    | 2 11' | 3 ⊚  | 12' |
|              |       | Lt   | Lr  | Lt     | Lr      | Lt     | Lr     | Lt    | Lr    | Lt     | Lr    | Lt   | Lr  |
| 20000        | 2.1   | 100  | 100 | 100    | 100     | 100    | 100    | 100   | 100   | 100    | 100   | 100  | 100 |
| 15000        | 2.1   | 100  | 100 | 100    | 100     | 100    | 100    | 100   | 100   | 100    | 100   | 100  | 100 |
| 10000        | 2.1   | 100  | 100 | 100    | 100     | 100    | 100    | 100   | 100   | 100    | 100   | 100  | 100 |
| 7000         | 2.1   | 100  | 100 | 100    | 100     | 100    | 100    | 100   | 100   | 100    | 100   | 100  | 100 |
| 5000         | 2.1   | 100  | 100 | 100    | 100     | 100    | 100    | 100   | 100   | 100    | 100   | 100  | 100 |
| 4000         | 2.1   | 100  | 100 | 100    | 100     | 100    | 100    | 100   | 100   | 100    | 100   | 100  | 100 |
| 3000         | 2.1   | 100  | 100 | 100    | 100     | 100    | 100    | 100   | 100   | 100    | 100   | 100  | 100 |
| 2500         | 2.1   | 100  | 100 | 100    | 100     | 100    | 100    | 100   | 100   | 100    | 100   | 100  | 100 |
| 2250         | 2.1   | 100  | 100 | 100    | 100     | 100    | 100    | 100   | 100   | 100    | 100   | 100  | 100 |
| 2000         | 2.1   | 100  | 100 | 100    | 100     | 100    | 100    | 100   | 100   | 100    | 100   | 100  | 100 |
| 1750         | 2.1   | 100  | 100 | 100    | 100     | 100    | 100    | 100   | 100   | 100    | 100   | 100  | 100 |
| 1500         | 2.1   | 100  | 100 | 100    | 100     | 100    | 100    | 100   | 100   | 100    | 100   | 100  | 100 |
| 1300         | 2.1   | 100  | 100 | 100    | 100     | 100    | 100    | 100   | 100   | 100    | 100   | 100  | 100 |
| 1150         | 2.3   | 92   | 100 | 92     | 100     | 92     | 100    | 92    | 100   | 92     | 100   | 92   | 100 |
| 1000         | 2.4   | 88   | 100 | 88     | 100     | 88     | 100    | 88    | 100   | 88     | 100   | 88   | 100 |
| 900          | 2.5   | 84   | 100 | 84     | 100     | 84     | 100    | 84    | 100   | 84     | 100   | 84   | 100 |
| 800          | 2.6   | 81   | 100 | 81     | 100     | 81     | 100    | 81    | 100   | 81     | 100   | 81   | 100 |
| 750          | 2.7   | 78   | 100 | 78     | 100     | 78     | 100    | 78    | 100   | 78     | 100   | 78   | 100 |
| 700          | 2.8   | 75   | 100 | 75     | 100     | 75     | 100    | 75    | 100   | 75     | 100   | 75   | 100 |
| 650          | 2.9   | 73   | 100 | 73     | 100     | 73     | 100    | 73    | 100   | 73     | 100   | 73   | 100 |
| 600          | 2.9   | 73   | 100 | 73     | 100     | 73     | 100    | 73    | 100   | 73     | 100   | 73   | 100 |
| 550          | 3.0   | 70   | 100 | 70     | 100     | 70     | 100    | 70    | 100   | 70     | 100   | 84   | 120 |
| 500          | 3.2   | 66   | 100 | 66     | 100     | 66     | 100    | 66    | 100   | 66     | 100   | 79   | 120 |
| 475          | 3.2   | 66   | 100 | 66     | 100     | 66     | 100    | 66    | 100   | 66     | 100   | 79   | 120 |
| 450          | 3.3   | 64   | 100 | 64     | 100     | 64     | 100    | 64    | 100   | 77     | 120   | 77   | 120 |
| 425          | 3.4   | 62   | 100 | 62     | 100     | 62     | 100    | 62    | 100   | 75     | 120   | 75   | 120 |
| 400          | 3.4   | 62   | 100 | 62     | 100     | 62     | 100    | 62    | 100   | 75     | 120   | 75   | 120 |
| 375          | 3.5   | 60   | 100 | 60     | 100     | 60     | 100    | 60    | 100   | 72     | 120   | 72   | 120 |
| 350          | 3.6   | 59   | 100 | 59     | 100     | 59     | 100    | 70    | 120   | 70     | 120   | 82   | 140 |
| 325          | 3.7   | 57   | 100 | 57     | 100     | 57     | 100    | 69    | 120   | 69     | 120   | 80   | 140 |
| 300          | 3.8   | 56   | 100 | 56     | 100     | 56     | 100    | 67    | 120   | 67     | 120   | 78   | 140 |
| 280          | 3.9   | 54   | 100 | 54     | 100     | 54     | 100    | 65    | 120   | 76     | 140   | 76   | 140 |
| 265          | 3.9   | 54   | 100 | 54     | 100     | 54     | 100    | 65    | 120   | 76     | 140   | 76   | 140 |
| 250          | 4.0   | 53   | 100 | 53     | 100     | 63     | 120    | 63    | 120   | 74     | 140   | 74   | 140 |
| 235          | 4.0   | 53   | 100 | 53     | 100     | 63     | 120    | 63    | 120   | 74     | 140   | 74   | 140 |
| 220          | 4.0   | 53   | 100 | 53     | 100     | 63     | 120    | 63    | 120   | 74     | 140   | 74   | 140 |
| <b>⊕</b> 204 | 4.0   | 53   | 100 | 53     | 100     | 63     | 120    | 63    | 120   | 74     | 140   | 74   | 140 |

Lt AND Lr VALUES IN FEET.

FOR PAVEMENT WIDTHS GREATER THAN 72 FEET USE Lr VALUES DEVELOPED BY IGRDS WITH AN ABSOLUTE MINIMUM Lr OF 100 FEET.

**⊕**MINIMUM ALLOWABLE RADIUS

VIRGINIA DEPARTMENT OF TRANSPORTATION

REV. 1/07 801.22

## DESIGN FACTORS FOR A DESIGN SPEED OF 30 MPH (URBAN) USING E=4% MAX.

|              |     |     |     |      |         |         | F       | PAVEMEN | IT WIDT | Н      |         |      |     |
|--------------|-----|-----|-----|------|---------|---------|---------|---------|---------|--------|---------|------|-----|
| RADIUS       | E   | 24  | FT  | 36 F | Т       | 48 F    | Т       | 60 F    | Т       | 66 F   | Т       | 72 F | Т   |
| (FEET)       | (%) |     |     |      | IGRDS E | QUIVALE | ENTS (N | IUMBER  | OF LANE | S AT L | ANE WIL | TH)  |     |
|              |     | 1@  | 12' | 1.5  | ⊉ 12'   | 2 @     | 12'     | 3 @     | 10'     | 3 @    | 11'     | 3 @  | 12' |
|              |     | Lt  | Lr  | Lt   | Lr      | Lt      | Lr      | Lt      | Lr      | Lt     | Lr      | Lt   | Lr  |
| 20000        | 2.1 | 100 | 100 | 100  | 100     | 100     | 100     | 100     | 100     | 100    | 100     | 100  | 100 |
| 15300        | 2.1 | 100 | 100 | 100  | 100     | 100     | 100     | 100     | 100     | 100    | 100     | 100  | 100 |
| 10000        | 2.1 | 100 | 100 | 100  | 100     | 100     | 100     | 100     | 100     | 100    | 100     | 100  | 100 |
| 7000         | 2.1 | 100 | 100 | 100  | 100     | 100     | 100     | 100     | 100     | 100    | 100     | 100  | 100 |
| 5300         | 2.1 | 100 | 100 | 100  | 100     | 100     | 100     | 100     | 100     | 100    | 100     | 100  | 100 |
| 4000         | 2.1 | 100 | 100 | 100  | 100     | 100     | 100     | 100     | 100     | 100    | 100     | 100  | 100 |
| 3000         | 2.1 | 100 | 100 | 100  | 100     | 100     | 100     | 100     | 100     | 100    | 100     | 100  | 100 |
| 2530         | 2.1 | 100 | 100 | 100  | 100     | 100     | 100     | 100     | 100     | 100    | 100     | 100  | 100 |
| 2250         | 2.1 | 100 | 100 | 100  | 100     | 100     | 100     | 100     | 100     | 100    | 100     | 100  | 100 |
| 2000         | 2.1 | 100 | 100 | 100  | 100     | 100     | 100     | 100     | 100     | 100    | 100     | 100  | 100 |
| 1750         | 2.2 | 96  | 100 | 96   | 100     | 96      | 100     | 96      | 100     | 96     | 100     | 96   | 100 |
| 1500         | 2.4 | 88  | 100 | 88   | 100     | 88      | 100     | 88      | 100     | 88     | 100     | 88   | 100 |
| 1000         | 2.5 | 84  | 100 | 84   | 100     | 84      | 100     | 84      | 100     | 84     | 100     | 84   | 100 |
| 1150         | 2.6 | 81  | 100 | 81   | 100     | 81      | 100     | 81      | 100     | 81     | 100     | 81   | 100 |
| 1000         | 2.8 | 75  | 100 | 75   | 100     | 75      | 100     | 75      | 100     | 75     | 100     | 90   | 120 |
| 900          | 2.9 | 73  | 100 | 73   | 100     | 73      | 100     | 73      | 100     | 73     | 100     | 87   | 120 |
| 800          | 3.0 | 70  | 100 | 70   | 100     | 70      | 100     | 70      | 100     | 70     | 100     | 84   | 120 |
| 750          | 3.1 | 68  | 100 | 68   | 100     | 68      | 100     | 68      | 100     | 82     | 120     | 82   | 120 |
| 700          | 3.2 | 66  | 100 | 66   | 100     | 66      | 100     | 66      | 100     | 79     | 120     | 79   | 120 |
| 650          | 3.3 | 64  | 100 | 64   | 100     | 64      | 100     | 64      | 100     | 77     | 120     | 77   | 120 |
| 600          | 3.4 | 62  | 100 | 62   | 100     | 62      | 100     | 75      | 120     | 75     | 120     | 87   | 140 |
| 570          | 3.5 | 60  | 100 | 60   | 100     | 60      | 100     | 72      | 120     | 72     | 120     | 84   | 140 |
| 500          | 3.6 | 59  | 100 | 59   | 100     | 59      | 100     | 70      | 120     | 70     | 120     | 82   | 140 |
| 475          | 3.7 | 57  | 100 | 57   | 100     | 57      | 100     | 69      | 120     | 80     | 140     | 80   | 140 |
| 450          | 3.8 | 56  | 100 | 56   | 100     | 67      | 120     | 67      | 120     | 78     | 140     | 78   | 140 |
| 425          | 3.8 | 56  | 100 | 56   | 100     | 67      | 120     | 67      | 120     | 78     | 140     | 78   | 140 |
| 400          | 3.9 | 54  | 100 | 54   | 100     | 65      | 120     | 65      | 120     | 76     | 140     | 76   | 140 |
| 375          | 3.9 | 54  | 100 | 54   | 100     | 65      | 120     | 65      | 120     | 76     | 140     | 76   | 140 |
| 350          | 4.0 | 53  | 100 | 53   | 100     | 63      | 120     | 63      | 120     | 74     | 140     | 84   | 160 |
| 325          | 4.0 | 53  | 100 | 53   | 100     | 63      | 120     | 63      | 120     | 74     | 140     | 84   | 160 |
| <b>⊕</b> 300 | 4.0 | 53  | 100 | 53   | 100     | 63      | 120     | 63      | 120     | 74     | 140     | 84   | 160 |

NOTE:

Lt AND Lr VALUES IN FEET.

FOR PAVEMENT WIDTHS GREATER THAN 72 FEET USE Lr VALUES DEVELOPED BY IGRDS WITH AN ABSOLUTE MINIMUM Lr OF 100 FEET.

TC-5

## DESIGN FACTORS FOR A DESIGN SPEED OF 35 MPH (URBAN) USING E= 4% MAX.

|             |     |     |     |         |          |         | PAVE  | MENT W | IDTH    |        |       |      |     |
|-------------|-----|-----|-----|---------|----------|---------|-------|--------|---------|--------|-------|------|-----|
| RADIUS      | E   | 24  | FT  | 36 F1   | -        | 48 F    | Т     | 60 F   | Т       | 66 F   | Т     | 72 F | Т   |
| (FEET)      | (%) |     |     | IGRDS E | EQUIVALE | ENTS (N | UMBER | OF LAN | ES AT L | ANE WI | OTH)  |      |     |
|             |     | 1@  | 12' | 1.5 @   | 12'      | 2 @     | 12'   | 3 @    | 10'     | 3 @    | 2 11' | 3 @  | 12' |
|             |     | Lt  | Lr  | Lt      | Lr       | Lt      | Lr    | Lt     | Lr      | Lt     | Lr    | Lt   | Lr  |
| 20000       | 2.1 | 120 | 120 | 120     | 120      | 120     | 120   | 120    | 120     | 120    | 120   | 120  | 120 |
| 15000       | 2.1 | 120 | 120 | 120     | 120      | 120     | 120   | 120    | 120     | 120    | 120   | 120  | 120 |
| 10000       | 2.1 | 120 | 120 | 120     | 120      | 120     | 120   | 120    | 120     | 120    | 120   | 120  | 120 |
| 7000        | 2.1 | 120 | 120 | 120     | 120      | 120     | 120   | 120    | 120     | 120    | 120   | 120  | 120 |
| 5000        | 2.1 | 120 | 120 | 120     | 120      | 120     | 120   | 120    | 120     | 120    | 120   | 120  | 120 |
| 4000        | 2.1 | 120 | 120 | 120     | 120      | 120     | 120   | 120    | 120     | 120    | 120   | 120  | 120 |
| 3000        | 2.1 | 120 | 120 | 120     | 120      | 120     | 120   | 120    | 120     | 120    | 120   | 120  | 120 |
| 2500        | 2.1 | 120 | 120 | 120     | 120      | 120     | 120   | 120    | 120     | 120    | 120   | 120  | 120 |
| 2250        | 2.2 | 115 | 120 | 115     | 120      | 115     | 120   | 115    | 120     | 115    | 120   | 115  | 120 |
| 2000        | 2.4 | 105 | 120 | 105     | 120      | 105     | 120   | 105    | 120     | 105    | 120   | 105  | 120 |
| 1750        | 2.5 | 101 | 120 | 101     | 120      | 101     | 120   | 101    | 120     | 101    | 120   | 101  | 120 |
| 1500        | 2.7 | 94  | 120 | 94      | 120      | 94      | 120   | 94     | 120     | 94     | 120   | 94   | 120 |
| 1300        | 2.8 | 90  | 120 | 90      | 120      | 90      | 120   | 90     | 120     | 90     | 120   | 90   | 120 |
| 1150        | 3.0 | 84  | 120 | 84      | 120      | 84      | 120   | 84     | 120     | 84     | 120   | 84   | 120 |
| 1000        | 3.2 | 79  | 120 | 79      | 120      | 79      | 120   | 79     | 120     | 79     | 120   | 92   | 140 |
| 900         | 3.3 | 77  | 120 | 77      | 120      | 77      | 120   | 77     | 120     | 77     | 120   | 90   | 140 |
| 800         | 3.5 | 72  | 120 | 72      | 120      | 72      | 120   | 72     | 120     | 84     | 140   | 84   | 140 |
| 750         | 3.5 | 72  | 120 | 72      | 120      | 72      | 120   | 72     | 120     | 84     | 140   | 84   | 140 |
| 700         | 3.6 | 70  | 120 | 70      | 120      | 70      | 120   | 70     | 120     | 82     | 140   | 82   | 140 |
| 650         | 3.7 | 69  | 120 | 69      | 120      | 69      | 120   | 69     | 120     | 80     | 140   | 91   | 160 |
| 600         | 3.8 | 67  | 120 | 67      | 120      | 67      | 120   | 78     | 140     | 78     | 140   | 89   | 160 |
| 550         | 3.9 | 65  | 120 | 65      | 120      | 65      | 120   | 76     | 140     | 76     | 140   | 87   | 160 |
| 500         | 4.0 | 63  | 120 | 63      | 120      | 63      | 120   | 74     | 140     | 74     | 140   | 84   | 160 |
| 475         | 4.0 | 63  | 120 | 63      | 120      | 63      | 120   | 74     | 140     | 74     | 140   | 84   | 160 |
| 450         | 4.0 | 63  | 120 | 63      | 120      | 63      | 120   | 74     | 140     | 74     | 140   | 84   | 160 |
| 425         | 4.0 | 63  | 120 | 63      | 120      | 63      | 120   | 74     | 140     | 74     | 140   | 84   | 160 |
| <b></b> 420 | 4.0 | 63  | 120 | 63      | 120      | 63      | 120   | 74     | 140     | 74     | 140   | 84   | 160 |

NOTE:

Lt AND Lr VALUES IN FEET.

FOR PAVEMENT WIDTHS GREATER THAN 72 FEET USE LT VALUES DEVELOPED BY IGRDS WITH AN ABSOLUTE MINIMUM LT OF 120 FEET.

## DESIGN FACTORS FOR A DESIGN SPEED OF 40 MPH (URBAN) USING E= 4 % MAX.

|              |     |     |     |       |         |        | P#   | AVEMEN | T WIDT | Ή    |       |         |     |
|--------------|-----|-----|-----|-------|---------|--------|------|--------|--------|------|-------|---------|-----|
| RADIUS       | E   | 24  | FT  | 36 F  | Т       | 48 F   | Т.   | 60 F   | - T    | 66 F | Т     | 72 I    | ŦΤ  |
| (FEET)       | (%) |     |     |       | IGRDS E | QUIVAL | ENTS | (NUMBE | R OF I | ANES | AT LA | NE MID. | ГН) |
|              |     | 1@  | 12' | 1.5 @ | 12'     | 2 @    | 12'  | 3 @    | 10'    | 3 ⊚  | 11'   | 3 ⊚     | 12' |
|              |     | Lt  | Lr  | Lt    | Lr      | Lt     | Lr   | Lt     | Lr     | Lt   | Lr    | Lt      | Lr  |
| 20000        | 2.1 | 120 | 120 | 120   | 120     | 120    | 120  | 120    | 120    | 120  | 120   | 120     | 120 |
| 15000        | 2.1 | 120 | 120 | 120   | 120     | 120    | 120  | 120    | 120    | 120  | 120   | 120     | 120 |
| 10000        | 2.1 | 120 | 120 | 120   | 120     | 120    | 120  | 120    | 120    | 120  | 120   | 120     | 120 |
| 7000         | 2.1 | 120 | 120 | 120   | 120     | 120    | 120  | 120    | 40     | 120  | 120   | 120     | 120 |
| 5000         | 2.1 | 120 | 120 | 120   | 120     | 120    | 120  | 120    | 120    | 120  | 120   | 120     | 120 |
| 4000         | 2.1 | 120 | 120 | 120   | 120     | 120    | 120  | 120    | 120    | 120  | 120   | 120     | 120 |
| 3000         | 2.2 | 115 | 120 | 115   | 120     | 115    | 120  | 115    | 120    | 115  | 120   | 115     | 120 |
| 2500         | 2.4 | 105 | 120 | 105   | 120     | 105    | 120  | 105    | 120    | 105  | 120   | 105     | 120 |
| 2250         | 2.5 | 101 | 120 | 101   | 120     | 101    | 120  | 101    | 120    | 101  | 120   | 101     | 120 |
| 2000         | 2.7 | 94  | 120 | 94    | 120     | 94     | 120  | 94     | 120    | 94   | 120   | 94      | 120 |
| 1750         | 2.8 | 90  | 120 | 90    | 120     | 90     | 120  | 90     | 120    | 90   | 120   | 90      | 120 |
| 1500         | 3.0 | 84  | 120 | 84    | 120     | 84     | 120  | 84     | 120    | 84   | 120   | 98      | 140 |
| 1300         | 3.2 | 79  | 120 | 79    | 120     | 79     | 120  | 79     | 120    | 92   | 140   | 92      | 140 |
| 1150         | 3.3 | 77  | 120 | 77    | 120     | 77     | 120  | 77     | 120    | 90   | 140   | 90      | 140 |
| 1000         | 3.5 | 72  | 120 | 72    | 120     | 72     | 120  | 84     | 140    | 84   | 140   | 96      | 160 |
| 900          | 3.7 | 69  | 120 | 69    | 120     | 69     | 120  | 80     | 140    | 91   | 160   | 91      | 160 |
| 800          | 3.8 | 67  | 120 | 67    | 120     | 67     | 120  | 78     | 140    | 89   | 160   | 89      | 160 |
| 750          | 3.9 | 65  | 120 | 65    | 120     | 76     | 140  | 76     | 140    | 87   | 160   | 97      | 180 |
| 700          | 3.9 | 65  | 120 | 65    | 120     | 76     | 140  | 76     | 140    | 87   | 160   | 97      | 180 |
| 650          | 4.0 | 63  | 120 | 63    | 120     | 74     | 140  | 74     | 140    | 84   | 160   | 95      | 180 |
| 600          | 4.0 | 63  | 120 | 63    | 120     | 74     | 140  | 74     | 140    | 84   | 160   | 95      | 180 |
| <b>⊛</b> 563 | 4.0 | 63  | 120 | 63    | 120     | 74     | 140  | 74     | 140    | 84   | 160   | 95      | 180 |

NOTE:

Lt AND Lr VALUES IN FEET.

FOR PAVEMENT WIDTHS GREATER THAN 72 FEET USE Lr VALUES DEVELOPED BY IGRDS WITH AN ABSOLUTE MINIMUM Lr OF 120 FEET.

TC-5

## DESIGN FACTORS FOR A DESIGN SPEED OF 45 MPH (URBAN) USING E= 4% MAX.

|              |     |     |     |         |          |         | PAVE  | MENT W  | IDTH   |         |      |      |     |
|--------------|-----|-----|-----|---------|----------|---------|-------|---------|--------|---------|------|------|-----|
| RADIUS       | E   | 24  | FT  | 36 F    | Γ        | 48 F    | Т     | 60 F    | Т      | 66 F    | Т    | 72 F | Т   |
| (FEET)       | (%) |     |     | IGRDS I | EQUIVALI | ENTS (N | UMBER | OF LANE | S AT L | ANE WIE | OTH) | •    |     |
|              |     | 1 @ | 12' | 1.5 @   | ⊉ 12'    | 2 @     | 12'   | 3 @     | 10'    | 3 @     | 11'  | 3 ⊚  | 12' |
|              |     | Lt  | Lr  | Lt      | Lr       | Lt      | Lr    | Lt      | Lr     | Lt      | Lr   | Lt   | Lr  |
| 20000        | 2.1 | 140 | 140 | 140     | 140      | 140     | 140   | 140     | 140    | 140     | 140  | 140  | 140 |
| 15000        | 2.1 | 140 | 140 | 140     | 140      | 140     | 140   | 140     | 140    | 140     | 140  | 140  | 140 |
| 10000        | 2.1 | 140 | 140 | 140     | 140      | 140     | 140   | 140     | 140    | 140     | 140  | 140  | 140 |
| 7000         | 2.1 | 140 | 140 | 140     | 140      | 140     | 140   | 140     | 140    | 140     | 140  | 140  | 140 |
| 5000         | 2.1 | 140 | 140 | 140     | 140      | 140     | 140   | 140     | 140    | 140     | 140  | 140  | 140 |
| 4000         | 2.1 | 140 | 140 | 140     | 140      | 140     | 140   | 140     | 140    | 140     | 140  | 140  | 140 |
| 3000         | 2.5 | 118 | 140 | 118     | 140      | 118     | 140   | 118     | 140    | 118     | 140  | 118  | 140 |
| 2500         | 2.7 | 109 | 140 | 109     | 140      | 109     | 140   | 109     | 140    | 109     | 140  | 109  | 140 |
| 2250         | 2.8 | 105 | 140 | 105     | 140      | 105     | 140   | 105     | 140    | 105     | 140  | 105  | 140 |
| 2000         | 2.9 | 102 | 140 | 102     | 140      | 102     | 140   | 102     | 140    | 102     | 140  | 102  | 140 |
| 1750         | 3.1 | 95  | 140 | 95      | 140      | 95      | 140   | 95      | 140    | 95      | 140  | 95   | 140 |
| 1500         | 3.3 | 90  | 140 | 90      | 140      | 90      | 140   | 90      | 140    | 90      | 140  | 102  | 160 |
| 1300         | 3.5 | 84  | 140 | 84      | 140      | 84      | 140   | 84      | 140    | 96      | 160  | 96   | 160 |
| 1150         | 3.7 | 80  | 140 | 80      | 140      | 80      | 140   | 80      | 140    | 91      | 160  | 103  | 180 |
| 1000         | 3.9 | 76  | 140 | 76      | 140      | 76      | 140   | 87      | 160    | 87      | 160  | 97   | 180 |
| 900          | 4.0 | 74  | 140 | 74      | 140      | 74      | 140   | 84      | 160    | 95      | 160  | 95   | 180 |
| 800          | 4.0 | 74  | 140 | 74      | 140      | 74      | 140   | 84      | 160    | 95      | 180  | 95   | 180 |
| 750          | 4.0 | 74  | 140 | 74      | 140      | 74      | 140   | 84      | 160    | 95      | 180  | 95   | 180 |
| <b>⊕</b> 732 | 4.0 | 74  | 140 | 74      | 140      | 74      | 140   | 84      | 160    | 95      | 180  | 95   | 180 |

NOTE:

Lt AND Lr VALUES IN FEET.

FOR PAVEMENT WIDTHS GREATER THAN 72 FEET USE Lr VALUES DEVELOPED BY IGRDS WITH AN ABSOLUTE MINIMUM Lr OF 140 FEET.

## DESIGN FACTORS FOR A DESIGN SPEED OF 50 MPH (URBAN) USING E= 4 % MAX.

|        |     |     |     |       |        |         | PAVE   | MENT | WIDTH  |        |      |        |     |
|--------|-----|-----|-----|-------|--------|---------|--------|------|--------|--------|------|--------|-----|
| RADIUS | E   | 24  | FT  | 36    | FT     | 48      | FT     | 60   | FT     | 66     | FT   | 72     | FT  |
| (FEET) | (%) |     |     | IGRI  | OS EQU | IIVALEN | TS (NU | MBER | OF LAN | IES AT | LANE | WIDTH: | )   |
|        |     | 1 @ | 12' | 1.5 @ | ⊉ 12'  | 2 @     | ! 12'  | 3 @  | 10'    | 3 @    | 11'  | 3 @    | 12' |
|        |     | Lt  | Lr  | Lt    | Lr     | Lt      | Lr     | Lt   | Lr     | Lt     | Lr   | Lt     | Lr  |
| 20000  | 2.1 | 160 | 160 | 160   | 160    | 160     | 160    | 160  | 160    | 160    | 160  | 160    | 160 |
| 15000  | 2.1 | 160 | 160 | 160   | 160    | 160     | 160    | 160  | 160    | 160    | 160  | 160    | 160 |
| 10000  | 2.1 | 160 | 160 | 160   | 160    | 160     | 160    | 160  | 160    | 160    | 160  | 160    | 160 |
| 7000   | 2.1 | 160 | 160 | 160   | 160    | 160     | 160    | 160  | 160    | 160    | 160  | 160    | 160 |
| 5000   | 2.1 | 160 | 160 | 160   | 160    | 160     | 160    | 160  | 160    | 160    | 160  | 160    | 160 |
| 4000   | 2.4 | 140 | 160 | 140   | 160    | 140     | 160    | 140  | 160    | 140    | 160  | 140    | 160 |
| 3000   | 2.7 | 125 | 160 | 125   | 160    | 125     | 160    | 125  | 160    | 125    | 160  | 125    | 160 |
| 2500   | 2.9 | 116 | 160 | 116   | 160    | 116     | 160    | 116  | 160    | 116    | 160  | 116    | 160 |
| 2250   | 3.1 | 109 | 160 | 109   | 160    | 109     | 160    | 109  | 160    | 109    | 160  | 109    | 160 |
| 2000   | 3.2 | 105 | 160 | 105   | 160    | 105     | 160    | 105  | 160    | 105    | 160  | 105    | 160 |
| 1750   | 3.4 | 99  | 160 | 99    | 160    | 99      | 160    | 99   | 160    | 99     | 160  | 112    | 180 |
| 1500   | 3.6 | 94  | 160 | 94    | 160    | 94      | 160    | 94   | 160    | 94     | 160  | 105    | 180 |
| 1300   | 3.8 | 89  | 160 | 89    | 160    | 89      | 160    | 89   | 160    | 100    | 180  | 111    | 200 |
| 1150   | 3.9 | 87  | 160 | 87    | 160    | 87      | 160    | 87   | 160    | 97     | 180  | 108    | 200 |
| 1000   | 4.0 | 84  | 160 | 84    | 160    | 84      | 160    | 84   | 160    | 95     | 180  | 105    | 200 |
| 929 🛞  | 4.0 | 84  | 160 | 84    | 160    | 84      | 160    | 84   | 160    | 95     | 180  | 105    | 200 |

#### NOTE:

Lt AND Lr VALUES IN FEET.

FOR PAVEMENT WIDTHS GREATER THAN 72 FEET USE Lr VALUES DEVELOPED BY IGRDS WITH AN ABSOLUTE MINIMUM Lr OF 160 FEET.

TC-5

## DESIGN FACTORS FOR A DESIGN SPEED OF 55 MPH (URBAN) USING E= 4% MAX.

|     |                                                                                         |              |                  |                      |         | PAVE    | MENT W  | IDTH   |                                                                                                                                                                                        |      |      |     |
|-----|-----------------------------------------------------------------------------------------|--------------|------------------|----------------------|---------|---------|---------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|-----|
| E   | 24 1                                                                                    | - T          | 36 F             | Г                    | 48 F    | Т       | 60 F    | Т      | 66 F                                                                                                                                                                                   | Т    | 72 F | Т   |
| (%) |                                                                                         |              | IGRDS E          | EQUIVALE             | ENTS (N | UMBER ( | OF LANE | S AT L | ANE WIE                                                                                                                                                                                | )TH) |      |     |
|     | 1@                                                                                      | 12'          | 1.5 @            | 12'                  | 2 @     | 12'     | 3 @     | 10'    | 3 @                                                                                                                                                                                    | 11'  | 3 @  | 12' |
|     | Lt                                                                                      | Lr           | Lt               | Lr                   | Lt      | Lr      | Lt      | Lr     | Lt                                                                                                                                                                                     | Lr   | Lt   | Lr  |
| 2.1 | 180                                                                                     | 180          | 180              | 180                  | 180     | 180     | 180     | 180    | 180                                                                                                                                                                                    | 180  | 180  | 180 |
| 2.1 | 180                                                                                     | 180          | 180              | 180                  | 180     | 180     | 180     | 180    | 180                                                                                                                                                                                    | 180  | 180  | 180 |
| 2.1 | 180                                                                                     | 180          | 180              | 180                  | 180     | 180     | 180     | 180    | 180                                                                                                                                                                                    | 180  | 180  | 180 |
| 2.1 | 180                                                                                     | 180          | 180              | 180                  | 180     | 180     | 180     | 180    | 180                                                                                                                                                                                    | 180  | 180  | 180 |
| 2.3 | 165                                                                                     | 180          | 165              | 180                  | 165     | 180     | 165     | 180    | 165                                                                                                                                                                                    | 180  | 165  | 180 |
| 2.6 | 146                                                                                     | 180          | 146              | 180                  | 146     | 180     | 146     | 180    | 146                                                                                                                                                                                    | 180  | 146  | 180 |
| 3.0 | 126                                                                                     | 180          | 126              | 180                  | 126     | 180     | 126     | 180    | 126                                                                                                                                                                                    | 180  | 126  | 180 |
| 3.3 | 115                                                                                     | 180          | 115              | 180                  | 115     | 180     | 115     | 180    | 115                                                                                                                                                                                    | 180  | 115  | 180 |
| 3.4 | 112                                                                                     | 180          | 112              | 180                  | 112     | 180     | 112     | 180    | 112                                                                                                                                                                                    | 180  | 112  | 180 |
| 3.6 | 105                                                                                     | 180          | 105              | 180                  | 105     | 180     | 105     | 180    | 105                                                                                                                                                                                    | 180  | 117  | 200 |
| 3.8 | 100                                                                                     | 180          | 100              | 180                  | 100     | 180     | 100     | 180    | 100                                                                                                                                                                                    | 180  | 111  | 200 |
| 3.9 | 97                                                                                      | 97 180 97    |                  | 180                  | 97      | 180     | 97      | 180    | 108                                                                                                                                                                                    | 200  | 108  | 200 |
| 4.0 | 95                                                                                      | 180          | 95               | 180                  | 95      | 180     | 95      | 180    | 105                                                                                                                                                                                    | 200  | 116  | 220 |
| 4.0 | 95                                                                                      | 180          | 95               | 180                  | 95      | 180     | 95      | 180    | 105                                                                                                                                                                                    | 200  | 116  | 220 |
|     | 2.1<br>2.1<br>2.1<br>2.1<br>2.3<br>2.6<br>3.0<br>3.3<br>3.4<br>3.6<br>3.8<br>3.9<br>4.0 | 1 @ Lt   2.1 | (%)  1 @ 12'  Lt | (%) IGRDS E  1 @ 12' | (%)     | (%)     | E       | E      | (%)   IGRDS EQUIVALENTS (NUMBER OF LANES AT L   1 @ 12'   1.5 @ 12'   2 @ 12'   3 @ 10'   Lt   Lr   Lt   Lr   Lt   Lr   Lt   Lr   Lt   Lr   Lt   Lr   Ls   Lr   Ls   Ls   Ls   Ls   Ls | E    | E    | E   |

NOTE:

Lt AND Lr VALUES IN FEET.

FOR PAVEMENT WIDTHS GREATER THAN 72 FEET USE Lr VALUES DEVELOPED BY IGRDS WITH AN ABSOLUTE MINIMUM Lr OF 180 FEET.

## DESIGN FACTORS FOR A DESIGN SPEED OF 60 MPH (URBAN) USING E= 4 % MAX.

|               |     |                    |     |       | F      | PAVEME  | NT WID | TH   |        |        |       |        |     |
|---------------|-----|--------------------|-----|-------|--------|---------|--------|------|--------|--------|-------|--------|-----|
| RADIUS        | E   | 24                 | FT  | 36    | FT     | 48      | FT     | 60   | FT     | 66     | FT    | 72     | FT  |
| (FEET)        | (%) |                    |     | IGRI  | DS EQL | JIVALEN | TS (NU | MBER | OF LAN | IES AT | LANE  | WIDTH: | )   |
|               |     | 1@                 | 12' | 1.5 @ | ⊉ 12'  | 2 @     | 12'    | 3 @  | 10'    | 3 @    | 2 11' | 3 @    | 12' |
|               |     | Lt                 | Lr  | Lt    | Lr     | Lt      | Lr     | Lt   | Lr     | Lt     | Lr    | Lt     | Lr  |
| 20000         | 2.1 | 180                | 180 | 180   | 180    | 180     | 180    | 180  | 180    | 180    | 180   | 180    | 180 |
| 15000         | 2.1 | 180                | 180 | 180   | 180    | 180     | 180    | 180  | 180    | 180    | 180   | 180    | 180 |
| 10000         | 2.1 | 180                | 180 | 180   | 180    | 180     | 180    | 180  | 180    | 180    | 180   | 180    | 180 |
| 7000          | 2.1 | 180 180<br>180 180 |     | 180   | 180    | 180     | 180    | 180  | 180    | 180    | 180   | 180    | 180 |
| 5000          | 2.6 | 146                | 180 | 146   | 180    | 146     | 180    | 146  | 180    | 146    | 180   | 146    | 180 |
| 4000          | 2.9 | 131                | 180 | 131   | 180    | 131     | 180    | 131  | 180    | 131    | 180   | 131    | 180 |
| 3000          | 3.3 | 115                | 180 | 115   | 180    | 115     | 180    | 115  | 180    | 115    | 180   | 115    | 180 |
| 2500          | 3.6 | 105                | 180 | 105   | 180    | 105     | 180    | 105  | 180    | 105    | 180   | 117    | 200 |
| 2250          | 3.7 | 103                | 180 | 103   | 180    | 103     | 180    | 103  | 180    | 114    | 200   | 114    | 200 |
| 2000          | 3.9 | 97                 | 180 | 97    | 180    | 97      | 180    | 97   | 180    | 108    | 200   | 119    | 220 |
| 1750          | 4.0 | 95                 | 180 | 95    | 180    | 95      | 180    | 95   | 180    | 105    | 200   | 116    | 220 |
| <b>⊕</b> 1505 | 4.0 | 95                 | 180 | 95    | 180    | 95      | 180    | 95   | 180    | 105    | 200   | 116    | 220 |

NOTE:

Lt AND Lr VALUES IN FEET.

FOR PAVEMENT WIDTHS GREATER THAN 72 FEET USE Lr VALUES DEVELOPED BY IGRDS WITH AN ABSOLUTE MINIMUM Lr OF 180 FEET.

| TC-5 DE     | ESIGN F | ACT( | DRS    | FOF | R A  | DESI  | IGN    | SPE     | ED C   | )F 2   | 0 M  | PH     | RUR   | AL)    | USIN  | IG E | = 8% | : МА   | X.   |                            |
|-------------|---------|------|--------|-----|------|-------|--------|---------|--------|--------|------|--------|-------|--------|-------|------|------|--------|------|----------------------------|
| DESIGN VELC | CITY=20 | WIE  | )TH=16 | FT  | WIDT | H= 18 | FT     | WID     | TH=20  | FT     | WID  | TH=22  | FT    | WID:   | TH=24 | FT   | WID  | TH=48  | FT   |                            |
|             |         |      |        |     |      | IGRE  | OS EQU | IIVALEI | NTS (N | IUMBER | OF L | ANES   | AT LA | NE WID | TH)   |      |      |        |      |                            |
|             |         |      | 1@8    | ı   |      | 1@ 9  | )'     |         | 1 @ 10 | )'     |      | 1 @ 11 |       |        | 1@ 1. | 2'   | 2    | 2 @ 12 |      |                            |
| RADIUS(FT)  | E(%)    | Lt   | Lr     | w   | Lt   | Lr    | w      | Lt      | Lr     | W      | Lt   | Lr     | W     | Lt     | Lr    | w    | Lt   | Lr     | W    |                            |
| 20000       | 2.1     | 60   | 60     | 0.0 | 60   | 60    | 0.0    | 60      | 60     | 0.0    | 60   | 60     | 0.0   | 60     | 60    | 0.0  | 60   | 60     | 0.0  |                            |
| 15000       | 2.1     | 60   | 60     | 0.0 | 60   | 60    | 0.0    | 60      | 60     | 0.0    | 60   | 60     | 0.0   | 60     | 60    | 0.0  | 60   | 60     | 0.0  |                            |
| 10000       | 2.1     | 60   | 60     | 0.0 | 60   | 60    | 0.0    | 60      | 60     | 0.0    | 60   | 60     | 0.0   | 60     | 60    | 0.0  | 60   | 60     | 0.0  |                            |
| 7000        | 2.1     | 60   | 60     | 0.0 | 60   | 60    | 0.0    | 60      | 60     | 0.0    | 60   | 60     | 0.0   | 60     | 60    | 0.0  | 60   | 60     | 0.0  | NOTE:                      |
| 5000        | 2.1     | 60   | 60     | 0.0 | 60   | 60    | 0.0    | 60      | 60     | 0.0    | 60   | 60     | 0.0   | 60     | 60    | 0.0  | 60   | 60     | 0.0  |                            |
| 4000        | 2.1     | 60   | 60     | 0.0 | 60   | 60    | 0.0    | 60      | 60     | 0.0    | 60   | 60     | 0.0   | 60     | 60    | 0.0  | 60   | 60     | 0.0  | Lt, Lr & w VALUES IN FEET. |
| 3000        | 2.1     | 60   | 60     | 0.0 | 60   | 60    | 0.0    | 60      | 60     | 0.0    | 60   | 60     | 0.0   | 60     | 60    | 0.0  | 60   | 60     | 0.0  |                            |
| 2500        | 2.1     | 13   | 60     | 3.6 | 14   | 60    | 2.6    | 60      | 60     | 0.0    | 60   | 60     | 0.0   | 60     | 60    | 0.0  | 60   | 60     | 0.0  |                            |
| 2250        | 2.1     | 13   | 60     | 3.7 | 14   | 60    | 2.7    | 60      | 60     | 0.0    | 60   | 60     | 0.0   | 60     | 60    | 0.0  | 60   | 60     | 0.0  |                            |
| 2000        | 2.1     | 13   | 60     | 3.7 | 14   | 60    | 2.7    | 60      | 60     | 0.0    | 60   | 60     | 0.0   | 60     | 60    | 0.0  | 60   | 60     | 0.0  |                            |
| 1750        | 2.1     | 13   | 60     | 3.8 | 14   | 60    | 2.8    | 60      | 60     | 0.0    | 60   | 60     | 0.0   | 60     | 60    | 0.0  | 60   | 60     | 0.0  |                            |
| 1500        | 2.1     | 13   | 60     | 3.9 | 14   | 60    | 2.9    | 60      | 60     | 0.0    | 60   | 60     | 0.0   | 60     | 60    | 0.0  | 60   | 60     | 0.0  |                            |
| 1300        | 2.1     | 13   | 60     | 4.0 | 14   | 60    | 3.0    | 15      | 60     | 2.0    | 60   | 60     | 0.0   | 60     | 60    | 0.0  | 60   | 60     | 0.0  |                            |
| 1150        | 2.1     | 13   | 60     | 4.1 | 14   | 60    | 3.1    | 15      | 60     | 2.0    | 60   | 60     | 0.0   | 60     | 60    | 0.0  | 60   | 60     | 0.0  |                            |
| 1000        | 2.4     | 13   | 60     | 4.2 | 14   | 60    | 3.2    | 15      | 60     | 2.2    | 53   | 60     | 0.0   | 53     | 60    | 0.0  | 53   | 60     | 0.0  |                            |
| 900         | 2.6     | 13   | 60     | 4.3 | 14   | 60    | 3.3    | 15      | 60     | 2.3    | 49   | 60     | 0.0   | 49     | 60    | 0.0  | 65   | 80     | 0.0  |                            |
| 800         | 2.9     | 13   | 60     | 4.4 | 14   | 60    | 3.4    | 15      | 60     | 2.4    | 44   | 60     | 0.0   | 44     | 60    | 0.0  | 58   | 80     | 0.0  |                            |
| 750         | 3.1     | 13   | 60     | 4.4 | 14   | 60    | 3.4    | 15      | 60     | 2.4    | 41   | 60     | 0.0   | 41     | 60    | 0.0  | 55   | 80     | 0.0  |                            |
| 700         | 3.3     | 13   | 60     | 4.5 | 14   | 60    | 3.5    | 14      | 60     | 2.5    | 39   | 60     | 0.0   | 39     | 60    | 0.0  | 51   | 80     | 0.0  |                            |
| 650         | 3.4     | 13   | 60     | 4.6 | 14   | 60    | 3.6    | 14      | 60     | 2.6    | 38   | 60     | 0.0   | 38     | 60    | 0.0  | 62   | 100    | 0.0  |                            |
| 600         | 3.7     | 13   | 60     | 4.7 | 14   | 60    | 3.7    | 14      | 60     | 2.7    | 35   | 60     | 0.0   | 35     | 60    | 0.0  | 57   | 100    | 0.0  |                            |
| 550         | 3.9     | 13   | 60     | 4.8 | 14   | 60    | 3.8    | 14      | 60     | 2.8    | 33   | 60     | 0.0   | 44     | 80    | 0.0  | 54   | 100    | 0.0  |                            |
| 500         | 4.2     | 13   | 60     | 4.9 | 18   | 80    | 3.9    | 19      | 80     | 2.9    | 40   | 80     | 0.0   | 40     | 80    | 0.0  | 60   | 120    | 0.0  |                            |
| 475         | 4.3     | 16   | 80     | 5.0 | 18   | 80    | 4.0    | 19      | 80     | 3.0    | 20   | 80     | 2.0   | 40     | 80    | 0.0  | 31   | 120    | 2.0  | ∰ MINIMUM ALLOWABLE RADIUS |
| 450         | 4.5     | 16   | 80     | 5.1 | 18   | 80    | 4.1    | 19      | 80     | 3.1    | 20   | 80     | 2.0   | 38     | 80    | 0.0  | 31   | 120    | 2.2  |                            |
| 425         | 4.7     | 16   | 80     | 5.2 | 18   | 80    | 4.2    | 19      | 80     | 3.2    | 20   | 80     | 2.2   | 36     | 80    | 0.0  | 30   | 120    | 2.4  |                            |
| 400         | 4.8     | 16   | 80     | 5.3 | 17   | 80    | 4.3    | 19      | 80     | 3.3    | 20   | 80     | 2.3   | 35     | 80    | 0.0  | 35   | 140    | 2.6  |                            |
| 375         | 5.0     | 16   | 80     | 5.4 | 17   | 80    | 4.4    | 18      | 80     | 3.4    | 24   | 100    | 2.4   | 34     | 80    | 0.0  | 35   | 140    | 2.8  |                            |
| 350         | 5.2     | 16   | 80     | 5.5 | 17   | 80    | 4.5    | 23      | 100    | 3.5    | 24   | 100    | 2.5   | 41     | 100   | 0.0  | 35   | 140    | 3.0  |                            |
| 325         | 5.4     | 16   | 80     | 5.7 | 21   | 100   | 4.7    | 23      | 100    | 3.7    | 24   | 100    | 2.7   | 39     | 100   | 0.0  | 35   | 140    | 3.4  |                            |
| 300         | 5.6     | 20   | 100    | 5.8 | 21   | 100   | 4.8    | 23      | 100    | 3.8    | 24   | 100    | 2.8   | 38     | 100   | 0.0  | 40   | 160    | 3.6  |                            |
| 280         | 5.8     | 20   | 100    | 6.0 | 21   | 100   | 5.0    | 22      | 100    | 4.0    | 24   | 100    | 3.0   | 30     | 120   | 2.0  | 39   | 160    | 4.0  |                            |
| 265         | 6.0     | 20   | 100    | 6.1 | 21   | 100   | 5.1    | 22      | 100    | 4.1    | 28   | 120    | 3.1   | 29     | 120   | 2.0  | 39   | 160    | 4.2  |                            |
| 250         | 6.1     | 19   | 100    | 6.3 | 21   | 100   | 5.3    | 22      | 100    | 4.3    | 28   | 120    | 3.3   | 29     | 120   | 2.3  | 44   | 180    | 4.6  |                            |
| 235         | 6.3     | 19   | 100    | 6.4 | 21   | 100   | 5.4    | 26      | 120    | 4.4    | 28   | 120    | 3.4   | 29     | 120   | 2.4  | 43   | 180    | 4.8  |                            |
| 220         | 6.5     | 19   | 100    | 6.6 | 25   | 120   | 5.6    | 26      | 120    | 4.6    | 28   | 120    | 3.6   | 29     | 120   | 2.6  | 43   | 180    | 5.2  |                            |
| 205         | 6.7     | 23   | 120    | 6.8 | 24   | 120   | 5.8    | 26      | 120    | 4.8    | 27   | 120    | 3.8   | 29     | 120   | 2.8  | 43   | 180    | 5.6  |                            |
| 190         | 6.9     | 22   | 120    | 7.1 | 24   | 120   | 6.1    | 26      | 120    | 5.1    | 31   | 140    | 4.1   | 33     | 140   | 3.1  | 47   | 200    | 6.2  |                            |
| 175         | 7.2     | 22   | 120    | 7.4 | 24   | 120   | 6.4    | 29      | 120    | 5.4    | 31   | 140    | 4.4   | 33     | 140   | 3.4  | 46   | 200    | 6.8  |                            |
| 160         | 7.4     | 22   | 120    | 7.7 | 27   | 140   | 6.7    | 29      | 140    | 5.7    | 31   | 140    | 4.7   | 32     | 140   | 3.7  | 51   | 220    | 7.4  |                            |
| 145         | 7.6     | 25   | 140    | 8.1 | 27   | 140   | 7.1    | 29      | 140    | 6.1    | 30   | 140    | 5.1   | 36     | 160   | 4.1  | 50   | 220    | 8.2  |                            |
| 130         | 7.9     | 24   | 140    | 8.6 | 26   | 140   | 7.6    | 32      | 160    | 6.6    | 34   | 160    | 5.6   | 36     | 160   | 4.6  | 53   | 240    | 9.2  |                            |
| 105         | 8.0     | 24   | 140    | 9.2 | 26   | 140   | 8.2    | 31      | 160    | 7.2    | 33   | 160    | 6.2   | 35     | 160   | 5.2  | 52   | 240    | 10.4 |                            |
| 115         | 0.0     |      |        |     |      |       |        |         |        |        |      |        |       |        |       |      |      |        |      |                            |

REV. 1/07 801.30

## DESIGN FACTORS FOR A DESIGN SPEED OF 25 MPH (RURAL) USING E= 8% MAX.

| DESIGN VELC | CITY=25 | WIE |     |     |       | TH=18 | FT     | WIE    | TH=20  | ) FT | WID   | TH=22  | FT    | WIE   | TH=24 | FT  | WID. | TH=48  | FT  |
|-------------|---------|-----|-----|-----|-------|-------|--------|--------|--------|------|-------|--------|-------|-------|-------|-----|------|--------|-----|
|             |         |     |     |     | IGRD: | S EQU | IVALEN | ITS (N | IUMBEF | ROF  | _ANES | AT L   | ANE W | IDTH) |       |     | •    |        |     |
|             |         |     | 1@8 | ı   |       | 1@ 9' |        |        | 1 @ 10 | 1    |       | 1 @ 11 | 1     |       | 1@    | 12' |      | 2 @ 12 | 2'  |
| RADIUS(FT)  | E(%)    | Lt  | Lr  | w   | Lt    | Lr    | w      | Lt     | Lr     | w    | Lt    | Lr     | w     | Lt    | Lr    | w   | Lt   | Lr     | w   |
| 20000       | 2.1     | 80  | 80  | 0.0 | 80    | 80    | 0.0    | 80     | 80     | 0.0  | 80    | 80     | 0.0   | 80    | 80    | 0.0 | 80   | 80     | 0.0 |
| 15000       | 2.1     | 80  | 80  | 0.0 | 80    | 80    | 0.0    | 80     | 80     | 0.0  | 80    | 80     | 0.0   | 80    | 80    | 0.0 | 80   | 80     | 0.0 |
| 10000       | 2.1     | 80  | 80  | 0.0 | 80    | 80    | 0.0    | 80     | 80     | 0.0  | 80    | 80     | 0.0   | 80    | 80    | 0.0 | 80   | 80     | 0.0 |
| 7000        | 2.1     | 80  | 80  | 0.0 | 80    | 80    | 0.0    | 80     | 80     | 0.0  | 80    | 80     | 0.0   | 80    | 80    | 0.0 | 80   | 80     | 0.0 |
| 5000        | 2.1     | 80  | 80  | 0.0 | 80    | 80    | 0.0    | 80     | 80     | 0.0  | 80    | 80     | 0.0   | 80    | 80    | 0.0 | 80   | 80     | 0.0 |
| 4000        | 2.1     | 80  | 80  | 0.0 | 80    | 80    | 0.0    | 80     | 80     | 0.0  | 80    | 80     | 0.0   | 80    | 80    | 0.0 | 80   | 80     | 0.0 |
| 3000        | 2.1     | 80  | 80  | 0.0 | 80    | 80    | 0.0    | 80     | 80     | 0.0  | 80    | 80     | 0.0   | 80    | 80    | 0.0 | 80   | 80     | 0.0 |
| 2500        | 2.1     | 18  | 80  | 3.7 | 19    | 80    | 2.7    | 80     | 80     | 0.0  | 80    | 80     | 0.0   | 80    | 80    | 0.0 | 80   | 80     | 0.0 |
| 2250        | 2.1     | 17  | 80  | 3.8 | 19    | 80    | 2.8    | 80     | 80     | 0.0  | 80    | 80     | 0.0   | 80    | 80    | 0.0 | 80   | 80     | 0.0 |
| 2000        | 2.1     | 17  | 80  | 3.9 | 19    | 80    | 2.9    | 80     | 80     | 0.0  | 80    | 80     | 0.0   | 80    | 80    | 0.0 | 80   | 80     | 0.0 |
| 1750        | 2.1     | 17  | 80  | 3.9 | 19    | 80    | 2.9    | 80     | 80     | 0.0  | 80    | 80     | 0.0   | 80    | 80    | 0.0 | 80   | 80     | 0.0 |
| 1500        | 2.4     | 17  | 80  | 4.0 | 18    | 80    | 3.0    | 20     | 80     | 2.0  | 70    | 80     | 0.0   | 70    | 80    | 0.0 | 70   | 80     | 0.0 |
| 1300        | 2.7     | 17  | 80  | 4.1 | 18    | 80    | 3.1    | 20     | 80     | 2.0  | 63    | 80     | 0.0   | 63    | 80    | 0.0 | 63   | 80     | 0.0 |
| 1150        | 2.9     | 17  | 80  | 4.2 | 18    | 80    | 3.2    | 19     | 80     | 2.2  | 58    | 80     | 0.0   | 58    | 80    | 0.0 | 58   | 80     | 0.0 |
| 1000        | 3.3     | 17  | 80  | 4.3 | 18    | 80    | 3.3    | 19     | 80     | 2.3  | 51    | 80     | 0.0   | 51    | 80    | 0.0 | 64   | 100    | 0.0 |
| 900         | 3.6     | 17  | 80  | 4.4 | 18    | 80    | 3.4    | 19     | 80     | 2.4  | 47    | 80     | 0.0   | 47    | 80    | 0.0 | 59   | 100    | 0.0 |
| 800         | 3.9     | 17  | 80  | 4.5 | 18    | 80    | 3.5    | 19     | 80     | 2.5  | 44    | 80     | 0.0   | 44    | 80    | 0.0 | 54   | 100    | 0.0 |
| 750         | 4.1     | 17  | 80  | 4.6 | 18    | 80    | 3.6    | 19     | 80     | 2.6  | 41    | 80     | 0.0   | 41    | 80    | 0.0 | 62   | 120    | 0.0 |
| 700         | 4.3     | 17  | 80  | 4.7 | 18    | 80    | 3.7    | 19     | 80     | 2.7  | 40    | 80     | 0.0   | 40    | 80    | 0.0 | 59   | 120    | 0.0 |
| 650         | 4.6     | 17  | 80  | 4.8 | 18    | 80    | 3.8    | 19     | 80     | 2.8  | 37    | 80     | 0.0   | 37    | 80    | 0.0 | 55   | 120    | 0.0 |
| 600         | 4.8     | 17  | 80  | 4.9 | 18    | 80    | 3.9    | 19     | 80     | 2.9  | 35    | 80     | 0.0   | 44    | 100   | 0.0 | 62   | 140    | 0.0 |
| 550         | 5.1     | 16  | 80  | 5.0 | 18    | 80    | 4.0    | 23     | 100    | 3.0  | 25    | 100    | 2.0   | 42    | 100   | 0.0 | 36   | 140    | 2.0 |
| 500         | 5.3     | 20  | 80  | 5.1 | 22    | 100   | 4.1    | 23     | 100    | 3.1  | 24    | 100    | 2.0   | 39    | 100   | 0.0 | 41   | 160    | 2.2 |
| 475         | 5.5     | 20  | 100 | 5.2 | 22    | 100   | 4.2    | 23     | 100    | 3.2  | 24    | 100    | 2.2   | 39    | 100   | 0.0 | 40   | 160    | 2.4 |
| 450         | 5.7     | 20  | 100 | 5.3 | 22    | 100   | 4.3    | 23     | 100    | 3.3  | 24    | 100    | 2.3   | 37    | 100   | 0.0 | 40   | 160    | 2.6 |
| 425         | 5.8     | 20  | 100 | 5.4 | 22    | 100   | 4.4    | 23     | 100    | 3.4  | 24    | 100    | 2.4   | 37    | 100   | 0.0 | 40   | 160    | 2.8 |
| 400         | 6.0     | 20  | 100 | 5.5 | 21    | 100   | 4.5    | 23     | 100    | 3.5  | 29    | 120    | 2.5   | 42    | 120   | 0.0 | 45   | 180    | 3.0 |
| 375         | 6.2     | 20  | 100 | 5.6 | 21    | 100   | 4.6    | 27     | 120    | 3.6  | 29    | 120    | 2.6   | 41    | 120   | 0.0 | 45   | 180    | 3.2 |
| 350         | 6.4     | 20  | 100 | 5.8 | 25    | 120   | 4.8    | 27     | 120    | 3.8  | 28    | 120    | 2.8   | 40    | 120   | 0.0 | 44   | 180    | 3.6 |
| 325         | 6.7     | 24  | 120 | 5.9 | 25    | 120   | 4.9    | 27     | 120    | 3.9  | 28    | 120    | 2.9   | 38    | 120   | 0.0 | 49   | 200    | 3.8 |
| 300         | 6.9     | 23  | 120 | 6.1 | 25    | 120   | 5.1    | 27     | 120    | 4.1  | 33    | 140    | 3.1   | 34    | 140   | 2.0 | 49   | 200    | 4.2 |
| 280         | 7.1     | 23  | 120 | 6.3 | 25    | 120   | 5.3    | 31     | 140    | 4.3  | 32    | 140    | 3.3   | 34    | 140   | 2.3 | 48   | 200    | 4.6 |
| 265         | 7.3     | 23  | 120 | 6.4 | 29    | 140   | 5.4    | 31     | 140    | 4.4  | 32    | 140    | 3.4   | 34    | 140   | 2.4 | 53   | 220    | 4.8 |
| 250         | 7.4     | 23  | 120 | 6.6 | 29    | 140   | 5.6    | 30     | 140    | 4.6  | 32    | 140    | 3.6   | 34    | 140   | 2.6 | 53   | 220    | 5.2 |
| 235         | 7.6     | 26  | 140 | 6.8 | 28    | 140   | 5.8    | 30     | 140    | 4.8  | 32    | 140    | 3.8   | 38    | 160   | 2.8 | 52   | 220    | 5.6 |
| 220         | 7.7     | 26  | 140 | 7.0 | 28    | 140   | 6.0    | 30     | 140    | 5.0  | 36    | 160    | 4.0   | 38    | 160   | 3.0 | 52   | 220    | 6.0 |
| 205         | 7.9     | 26  | 140 | 7.2 | 28    | 140   | 6.2    | 34     | 160    | 5.2  | 36    | 160    | 4.2   | 38    | 160   | 3.2 | 56   | 240    | 6.4 |
| 190         | 8.0     | 26  | 140 | 7.4 | 28    | 140   | 6.4    | 34     | 160    | 5.4  | 35    | 160    | 4.4   | 37    | 160   | 3.4 | 56   | 240    | 6.8 |
| 175         | 8.0     | 25  | 140 | 7.7 | 27    | 140   | 6.7    | 33     | 160    | 5.7  | 35    | 160    | 4.7   | 37    | 160   | 3.7 | 55   | 240    | 7.4 |
| 171 🛞       | 8.0     | 25  | 140 | 7.8 | 27    | 140   | 6.8    | 33     | 160    | 5.8  | 35    | 160    | 4.8   | 37    | 160   | 3.8 | 55   | 240    | 7.6 |

NOTE:

Lt, Lr & w VALUES IN FEET.

## DESIGN FACTORS FOR A DESIGN SPEED OF 30 MPH (RURAL) USING E= 8% MAX.

| DESIGN VELO  | DESIGN VELOCITY=30 WIDTH=16 FT |     |       |     | WIE | DTH=18 |       |       | )TH=20 |       |      | )TH=22 |       |       | H=24              | FT  | WID. | TH=48 | FT  |
|--------------|--------------------------------|-----|-------|-----|-----|--------|-------|-------|--------|-------|------|--------|-------|-------|-------------------|-----|------|-------|-----|
|              |                                |     |       |     |     | IGRDS  | S EQU | VALEN | ITS (N | UMBER | OF L | ANES   | AT LA | ANE W | IDTH)             |     |      |       |     |
|              |                                |     | 1@ 8' |     |     | 1@ 9'  |       |       | 1@ 10  | '     |      | 1 @ 11 | ·     | 1     | @ 12 <sup>1</sup> |     | 2    | @ 12' |     |
| RADIUS (FT)  | E(%)                           | Lt  | Lr    | w   | Lt  | Lr     | w     | Lt    | Lr     | w     | Lt   | Lr     | w     | Lt    | Lr                | w   | Lt   | Lr    | w   |
| 20000        | 2.1                            | 100 | 100   | 0.0 | 100 | 100    | 0.0   | 100   | 100    | 0.0   | 100  | 100    | 0.0   | 100   | 100               | 0.0 | 100  | 100   | 0.0 |
| 15000        | 2.1                            | 100 | 100   | 0.0 | 100 | 100    | 0.0   | 100   | 100    | 0.0   | 100  | 100    | 0.0   | 100   | 100               | 0.0 | 100  | 100   | 0.0 |
| 10000        | 2.1                            | 100 | 100   | 0.0 | 100 | 100    | 0.0   | 100   | 100    | 0.0   | 100  | 100    | 0.0   | 100   | 100               | 0.0 | 100  | 100   | 0.0 |
| 7000         | 2.1                            | 100 | 100   | 0.0 | 100 | 100    | 0.0   | 100   | 100    | 0.0   | 100  | 100    | 0.0   | 100   | 100               | 0.0 | 100  | 100   | 0.0 |
| 5000         | 2.1                            | 100 | 100   | 0.0 | 100 | 100    | 0.0   | 100   | 100    | 0.0   | 100  | 100    | 0.0   | 100   | 100               | 0.0 | 100  | 100   | 0.0 |
| 4000         | 2.1                            | 100 | 100   | 0.0 | 100 | 100    | 0.0   | 100   | 100    | 0.0   | 100  | 100    | 0.0   | 100   | 100               | 0.0 | 100  | 100   | 0.0 |
| 3000         | 2.1                            | 100 | 100   | 0.0 | 100 | 100    | 0.0   | 100   | 100    | 0.0   | 100  | 100    | 0.0   | 100   | 100               | 0.0 | 100  | 100   | 0.0 |
| 2500         | 2.1                            | 22  | 100   | 3.8 | 23  | 100    | 2.8   | 100   | 100    | 0.0   | 100  | 100    | 0.0   | 100   | 100               | 0.0 | 100  | 100   | 0.0 |
| 2250         | 2.2                            | 22  | 100   | 3.9 | 23  | 100    | 2.9   | 96    | 100    | 0.0   | 96   | 100    | 0.0   | 96    | 100               | 0.0 | 96   | 100   | 0.0 |
| 2000         | 2.4                            | 21  | 100   | 4.0 | 23  | 100    | 3.0   | 24    | 100    | 2.0   | 88   | 100    | 0.0   | 88    | 100               | 0.0 | 88   | 100   | 0.0 |
| 1750         | 2.7                            | 21  | 100   | 4.0 | 23  | 100    | 3.0   | 24    | 100    | 2.0   | 78   | 100    | 0.0   | 78    | 100               | 0.0 | 78   | 100   | 0.0 |
| 1500         | 3.1                            | 21  | 100   | 4.1 | 23  | 100    | 3.1   | 24    | 100    | 2.0   | 68   | 100    | 0.0   | 68    | 100               | 0.0 | 68   | 100   | 0.0 |
| 1300         | 3.5                            | 21  | 100   | 4.3 | 23  | 100    | 3.3   | 24    | 100    | 2.3   | 60   | 100    | 0.0   | 60    | 100               | 0.0 | 60   | 100   | 0.0 |
| 1150         | 3.8                            | 21  | 100   | 4.4 | 23  | 100    | 3.4   | 24    | 100    | 2.4   | 56   | 100    | 0.0   | 56    | 100               | 0.0 | 67   | 120   | 0.0 |
| 1000         | 4.2                            | 21  | 100   | 4.5 | 22  | 100    | 3.5   | 24    | 100    | 2.5   | 50   | 100    | 0.0   | 50    | 100               | 0.0 | 60   | 120   | 0.0 |
| 900          | 4.6                            | 21  | 100   | 4.6 | 22  | 100    | 3.6   | 24    | 100    | 2.6   | 46   | 100    | 0.0   | 46    | 100               | 0.0 | 64   | 140   | 0.0 |
| 800          | 4.9                            | 21  | 100   | 4.7 | 22  | 100    | 3.7   | 24    | 100    | 2.7   | 43   | 100    | 0.0   | 43    | 100               | 0.0 | 60   | 140   | 0.0 |
| 750          | 5.2                            | 21  | 100   | 4.8 | 22  | 100    | 3.8   | 24    | 100    | 2.8   | 41   | 100    | 0.0   | 41    | 100               | 0.0 | 57   | 140   | 0.0 |
| 700          | 5.4                            | 21  | 100   | 4.9 | 22  | 100    | 3.9   | 23    | 100    | 2.9   | 39   | 100    | 0.0   | 39    | 100               | 0.0 | 63   | 160   | 0.0 |
| 650          | 5.6                            | 20  | 100   | 5.0 | 22  | 100    | 4.0   | 23    | 100    | 3.0   | 29   | 120    | 2.0   | 45    | 120               | 0.0 | 60   | 160   | 2.0 |
| 600          | 5.9                            | 20  | 100   | 5.1 | 22  | 100    | 4.1   | 28    | 120    | 3.1   | 29   | 120    | 2.0   | 43    | 120               | 0.0 | 46   | 180   | 2.2 |
| 550          | 6.1                            | 20  | 100   | 5.2 | 26  | 120    | 4.2   | 28    | 120    | 3.2   | 29   | 120    | 2.2   | 42    | 120               | 0.0 | 45   | 180   | 2.4 |
| 500          | 6.4                            | 24  | 120   | 5.4 | 26  | 120    | 4.4   | 27    | 120    | 3.4   | 29   | 120    | 2.4   | 40    | 120               | 0.0 | 50   | 200   | 2.8 |
| 475          | 6.6                            | 24  | 120   | 5.5 | 26  | 120    | 4.5   | 27    | 120    | 3.5   | 33   | 140    | 2.5   | 39    | 120               | 0.0 | 50   | 200   | 3.0 |
| 450          | 6.8                            | 24  | 120   | 5.5 | 26  | 120    | 4.5   | 27    | 120    | 3.5   | 33   | 140    | 2.5   | 44    | 140               | 0.0 | 50   | 200   | 3.0 |
| 425          | 7.0                            | 24  | 120   | 5.7 | 25  | 120    | 4.7   | 32    | 140    | 3.7   | 33   | 140    | 2.7   | 42    | 140               | 0.0 | 54   | 220   | 3.4 |
| 400          | 7.1                            | 24  | 120   | 5.8 | 30  | 140    | 4.8   | 31    | 140    | 3.8   | 33   | 140    | 2.8   | 42    | 140               | 0.0 | 54   | 220   | 3.6 |
| 375          | 7.3                            | 24  | 120   | 5.9 | 29  | 140    | 4.9   | 31    | 140    | 3.9   | 33   | 140    | 2.9   | 41    | 140               | 0.0 | 54   | 220   | 3.8 |
| 350          | 7.5                            | 27  | 140   | 6.0 | 29  | 140    | 5.0   | 31    | 140    | 4.0   | 33   | 140    | 3.0   | 39    | 160               | 2.0 | 54   | 220   | 4.0 |
| 325          | 7.7                            | 27  | 140   | 6.2 | 29  | 140    | 5.2   | 30    | 140    | 4.2   | 37   | 160    | 3.2   | 39    | 160               | 2.2 | 58   | 240   | 4.4 |
| 300          | 7.9                            | 27  | 140   | 6.4 | 29  | 140    | 5.4   | 35    | 160    | 4.4   | 37   | 160    | 3.4   | 39    | 160               | 2.4 | 58   | 240   | 4.8 |
| 280          | 8.0                            | 27  | 140   | 6.6 | 33  | 160    | 5.6   | 35    | 160    | 4.6   | 37   | 160    | 3.6   | 38    | 160               | 2.6 | 57   | 240   | 5.2 |
| 265          | 8.0                            | 26  | 140   | 6.7 | 32  | 160    | 5.7   | 35    | 160    | 4.7   | 36   | 160    | 3.7   | 38    | 160               | 2.7 | 57   | 240   | 5.4 |
| <b>⊕</b> 250 | 8.0                            | 26  | 140   | 6.9 | 32  | 160    | 5.9   | 34    | 160    | 4.9   | 36   | 160    | 3.9   | 43    | 180               | 2.9 | 61   | 260   | 5.8 |

NOTE:

Lt, Lr & w VALUES IN FEET.

| DECION VELOCIT | V 75 | 1405 | TII 40 |     | WID T |        |      | WID 7  |       |      | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |       | ГТ    | WID T |       |     | T   | F11 70 |     |
|----------------|------|------|--------|-----|-------|--------|------|--------|-------|------|----------------------------------------|-------|-------|-------|-------|-----|-----|--------|-----|
| DESIGN VELOCIT | Y=35 | WID  | TH=18  |     |       | H=20   |      |        | H=22  |      |                                        | H=24  |       |       | H=48  | FI  | MID | ΓH=72  | F I |
|                |      |      |        | IGR | DS EQ | UIVALE | ENTS | (NUMBI | ER OF | LANE | S AT                                   | LANE  | WIDTH | )     |       |     |     |        |     |
|                |      |      | 1@9    | 1   |       | 1@ 10  | 1    |        | 1@ 1  | 1'   |                                        | @ 12' |       |       | 2 @ 1 | 2'  |     | 3 @ 1  | 2'  |
| RADIUS (FT)    | E(%) | Lt   | Lr     | w   | Lt    | Lr     | w    | Lt     | Lr    | w    | Lt                                     | Lr    | w     | Lt    | Lr    | w   | Lt  | Lr     | w   |
| 20000          | 2.1  | 120  | 120    | 0.0 | 120   | 120    | 0.0  | 120    | 120   | 0.0  | 120                                    | 120   | 0.0   | 120   | 120   | 0.0 | 120 | 120    | 0.0 |
| 15000          | 2.1  | 120  | 120    | 0.0 | 120   | 120    | 0.0  | 120    | 120   | 0.0  | 120                                    | 120   | 0.0   | 120   | 120   | 0.0 | 120 | 120    | 0.0 |
| 10000          | 2.1  | 120  | 120    | 0.0 | 120   | 120    | 0.0  | 120    | 120   | 0.0  | 120                                    | 120   | 0.0   | 120   | 120   | 0.0 | 120 | 120    | 0.0 |
| 7000           | 2.1  | 120  | 120    | 0.0 | 120   | 120    | 0.0  | 120    | 120   | 0.0  | 120                                    | 120   | 0.0   | 120   | 120   | 0.0 | 120 | 120    | 0.0 |
| 5000           | 2.1  | 120  | 120    | 0.0 | 120   | 120    | 0.0  | 120    | 120   | 0.0  | 120                                    | 120   | 0.0   | 120   | 120   | 0.0 | 120 | 120    | 0.0 |
| 4000           | 2.1  | 120  | 120    | 0.0 | 120   | 120    | 0.0  | 120    | 120   | 0.0  | 120                                    | 120   | 0.0   | 120   | 120   | 0.0 | 120 | 120    | 0.0 |
| 3000           | 2.1  | 120  | 120    | 0.0 | 120   | 120    | 0.0  | 120    | 120   | 0.0  | 120                                    | 120   | 0.0   | 120   | 120   | 0.0 | 120 | 120    | 0.0 |
| 2500           | 2.5  | 28   | 120    | 2.9 | 101   | 120    | 0.0  | 101    | 120   | 0.0  | 101                                    | 120   | 0.0   | 101   | 120   | 0.0 | 101 | 120    | 0.0 |
| 2250           | 2.8  | 27   | 120    | 3.0 | 29    | 120    | 2.0  | 90     | 120   | 0.0  | 90                                     | 120   | 0.0   | 90    | 120   | 0.0 | 90  | 120    | 0.0 |
| 2000           | 3.0  | 27   | 120    | 3.1 | 29    | 120    | 2.0  | 84     | 120   | 0.0  | 84                                     | 120   | 0.0   | 84    | 120   | 0.0 | 84  | 120    | 0.0 |
| 1750           | 3.4  | 27   | 120    | 3.2 | 29    | 120    | 2.2  | 75     | 120   | 0.0  | 75                                     | 120   | 0.0   | 75    | 120   | 0.0 | 87  | 140    | 0.0 |
| 1500           | 3.8  | 27   | 120    | 3.3 | 29    | 120    | 2.3  | 67     | 120   | 0.0  | 67                                     | 120   | 0.0   | 67    | 120   | 0.0 | 89  | 160    | 0.0 |
| 1300           | 4.3  | 27   | 120    | 3.4 | 29    | 120    | 2.4  | 59     | 120   | 0.0  | 59                                     | 120   | 0.0   | 69    | 140   | 0.0 | 88  | 180    | 0.0 |
| 1150           | 4.7  | 27   | 120    | 3.5 | 28    | 120    | 2.5  | 54     | 120   | 0.0  | 54                                     | 120   | 0.0   | 63    | 140   | 0.0 | 81  | 180    | 0.0 |
| 1000           | 5.2  | 27   | 120    | 3.6 | 28    | 120    | 2.6  | 49     | 120   | 0.0  | 49                                     | 120   | 0.0   | 65    | 160   | 0.0 | 81  | 200    | 0.0 |
| 900            | 5.5  | 27   | 120    | 3.8 | 28    | 120    | 2.8  | 46     | 120   | 0.0  | 46                                     | 120   | 0.0   | 62    | 160   | 0.0 | 84  | 220    | 0.0 |
| 800            | 5.9  | 26   | 120    | 3.9 | 28    | 120    | 2.9  | 43     | 120   | 0.0  | 43                                     | 120   | 0.0   | 65    | 180   | 0.0 | 61  | 240    | 2.7 |
| 750            | 6.1  | 26   | 120    | 4.0 | 28    | 120    | 3.0  | 29     | 120   | 2.0  | 42                                     | 120   | 0.0   | 51    | 200   | 2.0 | 66  | 260    | 3.0 |
| 700            | 6.4  | 26   | 120    | 4.1 | 28    | 120    | 3.1  | 34     | 140   | 2.0  | 46                                     | 140   | 0.0   | 51    | 200   | 2.2 | 66  | 260    | 3.3 |
| 650            | 6.6  | 26   | 120    | 4.2 | 32    | 140    | 3.2  | 34     | 140   | 2.2  | 45                                     | 140   | 0.0   | 50    | 200   | 2.4 | 70  | 280    | 3.6 |
| 600            | 6.9  | 30   | 140    | 4.3 | 32    | 140    | 3.3  | 34     | 140   | 2.3  | 43                                     | 140   | 0.0   | 55    | 220   | 2.6 | 70  | 280    | 3.9 |
| 550            | 7.1  | 30   | 140    | 4.4 | 32    | 140    | 3.4  | 34     | 140   | 2.4  | 42                                     | 140   | 0.0   | 55    | 220   | 2.8 | 75  | 300    | 4.2 |
| 500            | 7.4  | 30   | 140    | 4.6 | 32    | 140    | 3.6  | 38     | 160   | 2.6  | 46                                     | 160   | 0.0   | 60    | 240   | 3.2 | 79  | 320    | 4.8 |
| 475            | 7.6  | 30   | 140    | 4.7 | 36    | 160    | 3.7  | 38     | 160   | 2.7  | 45                                     | 160   | 0.0   | 59    | 240   | 3.4 | 79  | 320    | 5.1 |
| 450            | 7.7  | 30   | 140    | 4.8 | 36    | 160    | 3.8  | 38     | 160   | 2.8  | 44                                     | 160   | 0.0   | 59    | 240   | 3.6 | 79  | 320    | 5.4 |
| 425            | 7.8  | 34   | 160    | 4.9 | 36    | 160    | 3.9  | 38     | 160   | 2.9  | 44                                     | 160   | 0.0   | 64    | 260   | 3.8 | 83  | 340    | 5.7 |
| 400            | 7.9  | 33   | 160    | 5.0 | 35    | 160    | 4.0  | 37     | 160   | 3.0  | 44                                     | 180   | 2.0   | 63    | 260   | 4.0 | 83  | 340    | 6.0 |
| 375            | 8.0  | 33   | 160    | 5.2 | 35    | 160    | 4.2  | 37     | 160   | 3.2  | 44                                     | 180   | 2.2   | 63    | 260   | 4.4 | 82  | 340    | 6.6 |
| 350 ₩          | 8.0  | 3.3  | 160    | 5.3 | 35    | 160    | 4.3  | 42     | 180   | 3.3  | 44                                     | 180   | 2.3   | 63    | 260   | 4.6 | 82  | 340    | 6.9 |

Lt, Lr, & w VALUES IN FEET.

FOR PAVEMENT WIDTHS GREATER THAN 72 FEET USE Lr VALUES DEVELOPED BY IGRDS.

| DESIGN F       | FACTORS | 5 F( | OR A  | A DE | SIGN  | √ SF   | PEED   | OF    | 40     | MF   | РН ( | RUR   | AL)   | USII  | NG E   | == 8 | 3% N | 1AX.   |     |
|----------------|---------|------|-------|------|-------|--------|--------|-------|--------|------|------|-------|-------|-------|--------|------|------|--------|-----|
| DESIGN VELOCIT | Y=40    | WID  | TH=18 | FT   | WID   | TH=20  | FT     | WIDT  | H=22   | FT   | WIDT | ΓH=24 | FT    | WIDTI | H=48   | FT   | WIDT | H=72   | FT  |
|                |         |      |       | IGRI | DS EQ | UIVALE | ENTS ( | NUMBE | R OF   | LANE | S AT | LANE  | WIDTH | 1)    |        |      |      |        |     |
|                |         |      | 1@ 9  | 9'   |       | 1 @ 10 | )'     |       | 1 @ 11 | ı    |      | 1@ 1: | 2'    |       | 2 @ 1: | 2'   |      | 3 @ 12 | 2'  |
| RADIUS(FT)     | E(%)    | Lt   | Lr    | w    | Lt    | Lr     | w      | Lt    | Lr     | w    | Lt   | Lr    | w     | Lt    | Lr     | w    | Lt   | Lr     | w   |
| 20000          | 2.1     | 120  | 120   | 0.0  | 120   | 120    | 0.0    | 120   | 120    | 0.0  | 120  | 120   | 0.0   | 120   | 120    | 0.0  | 120  | 120    | 0.0 |
| 15000          | 2.1     | 120  | 120   | 0.0  | 120   | 120    | 0.0    | 120   | 120    | 0.0  | 120  | 120   | 0.0   | 120   | 120    | 0.0  | 120  | 120    | 0.0 |
| 10000          | 2.1     | 120  | 120   | 0.0  | 120   | 120    | 0.0    | 120   | 120    | 0.0  | 120  | 120   | 0.0   | 120   | 120    | 0.0  | 120  | 120    | 0.0 |
| 7000           | 2.1     | 120  | 120   | 0.0  | 120   | 120    | 0.0    | 120   | 120    | 0.0  | 120  | 120   | 0.0   | 120   | 120    | 0.0  | 120  | 120    | 0.0 |
| 5000           | 2.1     | 120  | 120   | 0.0  | 120   | 120    | 0.0    | 120   | 120    | 0.0  | 120  | 120   | 0.0   | 120   | 120    | 0.0  | 120  | 120    | 0.0 |
| 4000           | 2.1     | 120  | 120   | 0.0  | 120   | 120    | 0.0    | 120   | 120    | 0.0  | 120  | 120   | 0.0   | 120   | 120    | 0.0  | 120  | 120    | 0.0 |
| 3000           | 2.6     | 97   | 120   | 0.0  | 97    | 120    | 0.0    | 97    | 120    | 0.0  | 97   | 120   | 0.0   | 97    | 120    | 0.0  | 97   | 120    | 0.0 |
| 2500           | 3.1     | 27   | 120   | 3.0  | 29    | 120    | 2.0    | 82    | 120    | 0.0  | 82   | 120   | 0.0   | 82    | 120    | 0.0  | 95   | 140    | 0.0 |
| 2250           | 3.4     | 27   | 120   | 3.1  | 29    | 120    | 2.0    | 75    | 120    | 0.0  | 75   | 120   | 0.0   | 75    | 120    | 0.0  | 99   | 160    | 0.0 |
| 2000           | 3.7     | 27   | 120   | 3.2  | 29    | 120    | 2.2    | 69    | 120    | 0.0  | 69   | 120   | 0.0   | 69    | 120    | 0.0  | 91   | 160    | 0.0 |
| 1750           | 4.1     | 27   | 120   | 3.3  | 29    | 120    | 2.3    | 62    | 120    | 0.0  | 62   | 120   | 0.0   | 72    | 140    | 0.0  | 93   | 180    | 0.0 |
| 1500           | 4.6     | 27   | 120   | 3.4  | 29    | 120    | 2.4    | 55    | 120    | 0.0  | 55   | 120   | 0.0   | 74    | 160    | 0.0  | 92   | 200    | 0.0 |
| 1300           | 5.1     | 27   | 120   | 3.5  | 28    | 120    | 2.5    | 50    | 120    | 0.0  | 50   | 120   | 0.0   | 66    | 160    | 0.0  | 91   | 220    | 0.0 |
| 1150           | 5.5     | 27   | 120   | 3.7  | 28    | 120    | 2.7    | 45    | 120    | 0.0  | 45   | 120   | 0.0   | 68    | 180    | 0.0  | 90   | 240    | 0.0 |
| 1000           | 6.0     | 27   | 120   | 3.8  | 28    | 120    | 2.8    | 42    | 120    | 0.0  | 49   | 140   | 0.0   | 70    | 200    | 0.0  | 91   | 270    | 0.0 |
| 900            | 6.4     | 31   | 140   | 3.9  | 33    | 140    | 2.9    | 46    | 140    | 0.0  | 46   | 140   | 0.0   | 66    | 200    | 0.0  | 92   | 280    | 0.0 |
| 800            | 6.8     | 30   | 140   | 4.1  | 32    | 140    | 3.1    | 39    | 160    | 2.0  | 50   | 160   | 0.0   | 61    | 240    | 2.2  | 76   | 300    | 3.3 |
| 750            | 7.0     | 30   | 140   | 4.2  | 32    | 140    | 3.2    | 39    | 160    | 2.2  | 48   | 160   | 0.0   | 60    | 240    | 2.4  | 80   | 340    | 3.6 |
| 700            | 7.3     | 34   | 160   | 4.3  | 37    | 160    | 3.3    | 39    | 160    | 2.3  | 47   | 160   | 0.0   | 60    | 240    | 2.6  | 80   | 340    | 3.9 |
| 650            | 7.5     | 34   | 160   | 4.4  | 36    | 160    | 3.4    | 38    | 160    | 2.4  | 45   | 160   | 0.0   | 65    | 270    | 2.8  | 85   | 340    | 4.2 |
| 600            | 7.7     | 34   | 160   | 4.5  | 36    | 160    | 3.5    | 43    | 180    | 2.5  | 44   | 160   | 0.0   | 65    | 270    | 3.0  | 84   | 340    | 4.5 |
| 550            | 7.9     | 34   | 160   | 4.6  | 41    | 180    | 3.6    | 43    | 180    | 2.6  | 48   | 180   | 0.0   | 69    | 280    | 3.2  | 89   | 360    | 4.8 |
| 500            | 8.0     | 34   | 160   | 4.8  | 40    | 180    | 3.8    | 42    | 180    | 2.8  | 48   | 180   | 0.0   | 69    | 280    | 3.6  | 88   | 360    | 5.4 |
| 475            | 8.0     | 34   | 160   | 4.9  | 40    | 180    | 3.9    | 42    | 180    | 2.9  | 48   | 180   | 0.0   | 69    | 280    | 3.8  | 88   | 360    | 5.7 |
| ₩ 465          | 8.0     | 33   | 160   | 5.0  | 40    | 180    | 4.0    | 42    | 180    | 3.0  | 44   | 180   | 2.0   | 68    | 280    | 4.0  | 88   | 360    | 6.0 |

Lt, Lr & w VALUES IN FEET.

FOR PAVEMENT WIDTHS GREATER THAN 72 FEET USE Lr VALUES DEVELOPED BY IGRDS.

MINIMUM ALLOWABLE RADIUS

REV. 1/07 801.34

| DESIGN         | FACTO | RS I  | OR     | Α [ | DESI    | GN      | SPE   | ED (    | OF 4   | 15 N | лРН     | (RU   | RAL   | ) US    | ING    | E=  | 8% N  | ЛАХ.  |     |
|----------------|-------|-------|--------|-----|---------|---------|-------|---------|--------|------|---------|-------|-------|---------|--------|-----|-------|-------|-----|
| DESIGN VELOCIT | Y=45  | WIDTI | H=18 F | Т   | WIDT    | H=20    | FT    | WIDT    | H=22   | FT   | WIDT    | ΓH=24 | FT    | WIDTH   | 1=48 F | Т   | WIDTH | =72 F | Т   |
|                |       |       |        | IGF | RDS E   | QUIV AL | ENTS. | (NUME   | BER OF | LANE | ES AT   | LANE  | WIDTH | 1)      |        |     |       |       |     |
|                |       | 1@ 9' |        |     | 1 @ 10' |         |       | 1 @ 11' |        |      | 1 @ 12' |       |       | 2 @ 12' |        |     | 3     | 1     |     |
| RADIUS (FT)    | E(%)  | Lt    | Lr     | w   | Lt      | Lr      | w     | Lt      | Lr     | w    | Lt      | Lr    | w     | Lt      | Lr     | w   | Lt    | Lr    | w   |
| 20000          | 2.1   | 140   | 140    | 0.0 | 140     | 140     | 0.0   | 140     | 140    | 0.0  | 140     | 140   | 0.0   | 140     | 140    | 0.0 | 140   | 140   | 0.0 |
| 15000          | 2.1   | 140   | 140    | 0.0 | 140     | 140     | 0.0   | 140     | 140    | 0.0  | 140     | 140   | 0.0   | 140     | 140    | 0.0 | 140   | 140   | 0.0 |
| 10000          | 2.1   | 140   | 140    | 0.0 | 140     | 140     | 0.0   | 140     | 140    | 0.0  | 140     | 140   | 0.0   | 140     | 140    | 0.0 | 140   | 140   | 0.0 |
| 7000           | 2.1   | 140   | 140    | 0.0 | 140     | 140     | 0.0   | 140     | 140    | 0.0  | 140     | 140   | 0.0   | 140     | 140    | 0.0 | 140   | 140   | 0.0 |
| 5000           | 2.1   | 140   | 140    | 0.0 | 140     | 140     | 0.0   | 140     | 140    | 0.0  | 140     | 140   | 0.0   | 140     | 140    | 0.0 | 140   | 140   | 0.0 |
| 4000           | 2.5   | 118   | 140    | 0.0 | 118     | 140     | 0.0   | 118     | 140    | 0.0  | 118     | 140   | 0.0   | 118     | 140    | 0.0 | 118   | 140   | 0.0 |
| 3000           | 3.2   | 92    | 140    | 0.0 | 92      | 140     | 0.0   | 92      | 140    | 0.0  | 92      | 140   | 0.0   | 92      | 140    | 0.0 | 105   | 160   | 0.0 |
| 2500           | 3.7   | 32    | 140    | 3.1 | 34      | 140     | 2.0   | 80      | 140    | 0.0  | 80      | 140   | 0.0   | 80      | 140    | 0.0 | 103   | 180   | 0.0 |
| 2250           | 4.0   | 32    | 140    | 3.2 | 34      | 140     | 2.2   | 74      | 140    | 0.0  | 74      | 140   | 0.0   | 74      | 140    | 0.0 | 95    | 180   | 0.0 |
| 2000           | 4.4   | 32    | 140    | 3.3 | 33      | 140     | 2.3   | 67      | 140    | 0.0  | 67      | 140   | 0.0   | 77      | 160    | 0.0 | 96    | 200   | 0.0 |
| 1750           | 4.9   | 31    | 140    | 3.4 | 33      | 140     | 2.4   | 60      | 140    | 0.0  | 60      | 140   | 0.0   | 78      | 180    | 0.0 | 95    | 220   | 0.0 |
| 1500           | 5.4   | 31    | 140    | 3.5 | 33      | 140     | 2.5   | 55      | 140    | 0.0  | 55      | 140   | 0.0   | 70      | 180    | 0.0 | 94    | 240   | 0.0 |
| 1300           | 6.0   | 31    | 140    | 3.7 | 33      | 140     | 2.7   | 49      | 140    | 0.0  | 49      | 140   | 0.0   | 70      | 200    | 0.0 | 98    | 280   | 0.0 |
| 1150           | 6.4   | 31    | 140    | 3.8 | 33      | 140     | 2.8   | 46      | 140    | 0.0  | 53      | 160   | 0.0   | 73      | 220    | 0.0 | 99    | 300   | 0.0 |
| 1000           | 6.9   | 35    | 160    | 4.0 | 37      | 160     | 3.0   | 39      | 160    | 2.0  | 49      | 160   | 0.0   | 74      | 240    | 0.0 | 98    | 320   | 0.0 |
| 900            | 7.3   | 35    | 160    | 4.1 | 37      | 160     | 3.1   | 44      | 180    | 2.0  | 52      | 160   | 0.0   | 75      | 260    | 0.0 | 98    | 340   | 0.0 |
| 800            | 7.6   | 34    | 160    | 4.3 | 41      | 180     | 3.3   | 43      | 180    | 2.3  | 50      | 180   | 0.0   | 70      | 280    | 2.6 | 90    | 360   | 3.9 |
| 750            | 7.8   | 39    | 180    | 4.3 | 41      | 180     | 3.3   | 43      | 180    | 2.3  | 49      | 180   | 0.0   | 70      | 280    | 2.6 | 95    | 380   | 3.9 |
| 700            | 7.9   | 38    | 180    | 4.4 | 41      | 180     | 3.4   | 43      | 180    | 2.4  | 48      | 180   | 0.0   | 70      | 280    | 2.8 | 95    | 380   | 4.2 |
| 650            | 8.0   | 38    | 180    | 4.6 | 41      | 180     | 3.6   | 47      | 200    | 2.6  | 48      | 180   | 0.0   | 74      | 300    | 3.2 | 94    | 380   | 4.8 |
| ₩ 602          | 8.0   | 38    | 180    | 4.7 | 40      | 180     | 3.7   | 47      | 200    | 2.7  | 48      | 180   | 0.0   | 74      | 300    | 3.4 | 99    | 400   | 5.1 |

Lt, Lr & w VALUES IN FEET.

FOR PAVEMENT WIDTHS GREATER THAN 72 FEET USE Lr VALUES DEVELOPED BY IGRDS.

| DESIGN         | FACTOR: | S F(  | DR A   | A DE | SIGN    | N SF   | PEEL | ) OF    | - 5C   | ) MF | Н (     | RUR. | AL)   | USIN        | GΕ  | = 8; | ⁄. М <i>А</i> | ٩X. |     |
|----------------|---------|-------|--------|------|---------|--------|------|---------|--------|------|---------|------|-------|-------------|-----|------|---------------|-----|-----|
| DESIGN VELOCIT | Y=50    | WIDT  | H=18 F | Т    | WIDT    | H=20 F | T    | WIDT    | H=22   | FT   | WIDT    | H=24 | FT    | WIDTH=48 FT |     |      | WIDTH         | Т   |     |
|                |         |       |        | IGF  | RDS E   | QUIVAL | ENTS | (NUME   | BER OF | LANE | S AT    | LANE | WIDTH | 1)          |     |      |               |     |     |
|                |         | 1@ 9' |        |      | 1 @ 10' |        |      | 1 @ 11' |        |      | 1 @ 12' |      |       | 2 @ 12'     |     |      | 3             | 1   |     |
| RADIUS (FT)    | E(%)    | Lt    | Lr     | w    | Lt      | Lr     | w    | Lt      | Lr     | w    | Lt      | Lr   | w     | Lt          | Lr  | w    | Lt            | Lr  | w   |
| 20000          | 2.1     | 160   | 160    | 0.0  | 160     | 160    | 0.0  | 160     | 160    | 0.0  | 160     | 160  | 0.0   | 160         | 160 | 0.0  | 160           | 160 | 0.0 |
| 15000          | 2.1     | 160   | 160    | 0.0  | 160     | 160    | 0.0  | 160     | 160    | 0.0  | 160     | 160  | 0.0   | 160         | 160 | 0.0  | 160           | 160 | 0.0 |
| 10000          | 2.1     | 160   | 160    | 0.0  | 160     | 160    | 0.0  | 160     | 160    | 0.0  | 160     | 160  | 0.0   | 160         | 160 | 0.0  | 160           | 160 | 0.0 |
| 7000           | 2.1     | 160   | 160    | 0.0  | 160     | 160    | 0.0  | 160     | 160    | 0.0  | 160     | 160  | 0.0   | 160         | 160 | 0.0  | 160           | 160 | 0.0 |
| 5000           | 2.4     | 140   | 160    | 0.0  | 140     | 160    | 0.0  | 140     | 160    | 0.0  | 140     | 160  | 0.0   | 140         | 160 | 0.0  | 140           | 160 | 0.0 |
| 4000           | 2.9     | 116   | 160    | 0.0  | 116     | 160    | 0.0  | 116     | 160    | 0.0  | 116     | 160  | 0.0   | 116         | 160 | 0.0  | 116           | 160 | 0.0 |
| 3000           | 3.7     | 91    | 160    | 0.0  | 91      | 160    | 0.0  | 91      | 160    | 0.0  | 91      | 160  | 0.0   | 91          | 160 | 0.0  | 103           | 180 | 0.0 |
| 2500           | 4.3     | 36    | 160    | 3.2  | 38      | 160    | 2.2  | 79      | 160    | 0.0  | 79      | 160  | 0.0   | 79          | 160 | 0.0  | 108           | 220 | 0.0 |
| 2250           | 4.7     | 36    | 160    | 3.3  | 38      | 160    | 2.3  | 72      | 160    | 0.0  | 72      | 160  | 0.0   | 81          | 180 | 0.0  | 108           | 240 | 0.0 |
| 2000           | 5.1     | 36    | 160    | 3.4  | 38      | 160    | 2.4  | 66      | 160    | 0.0  | 66      | 160  | 0.0   | 83          | 200 | 0.0  | 108           | 260 | 0.0 |
| 1750           | 5.6     | 36    | 160    | 3.5  | 38      | 160    | 2.5  | 60      | 160    | 0.0  | 60      | 160  | 0.0   | 83          | 220 | 0.0  | 105           | 280 | 0.0 |
| 1500           | 6.2     | 35    | 160    | 3.7  | 38      | 160    | 2.7  | 55      | 160    | 0.0  | 55      | 160  | 0.0   | 82          | 240 | 0.0  | 102           | 300 | 0.0 |
| 1300           | 6.7     | 35    | 160    | 3.8  | 37      | 160    | 2.8  | 51      | 160    | 0.0  | 57      | 180  | 0.0   | 82          | 260 | 0.0  | 107           | 340 | 0.0 |
| 1150           | 7.2     | 35    | 160    | 3.9  | 42      | 180    | 2.9  | 47      | 160    | 0.0  | 53      | 180  | 0.0   | 76          | 260 | 0.0  | 105           | 360 | 0.0 |
| 1000           | 7.6     | 39    | 180    | 4.1  | 41      | 180    | 3.1  | 48      | 200    | 2.0  | 56      | 200  | 0.0   | 78          | 280 | 0.0  | 105           | 380 | 0.0 |
| 900            | 7.9     | 39    | 180    | 4.3  | 46      | 200    | 3.3  | 48      | 200    | 2.3  | 54      | 200  | 0.0   | 80          | 300 | 0.0  | 102           | 380 | 0.0 |
| 800            | 8.0     | 38    | 180    | 4.4  | 45      | 200    | 3.4  | 48      | 200    | 2.4  | 53      | 200  | 0.0   | 80          | 320 | 2.8  | 105           | 420 | 4.2 |
| ₩ 760          | 8.0     | 38    | 180    | 4.5  | 45      | 200    | 3.5  | 48      | 200    | 2.5  | 53      | 200  | 0.0   | 80          | 320 | 3.0  | 104           | 420 | 4.5 |

Lt, Lr & w VALUES IN FEET.

FOR PAVEMENT WIDTHS GREATER THAN 72 FEET USE Lr VALUES DEVELOPED BY IGRDS.

| DESIGN 1     | FACTORS | FOR                                               | ΑΙ    | DESI | GN      | SPE    | ED ( | OF 5    | 55 N  | 1PH | (RL         | JRAL | ) US | ING     | E=    | 8%  | МАХ.    |      |     |
|--------------|---------|---------------------------------------------------|-------|------|---------|--------|------|---------|-------|-----|-------------|------|------|---------|-------|-----|---------|------|-----|
| DESIGN VELOC | ITY=55  | WID.                                              | TH=18 | FT   | WIE     | )TH=20 | ) FT | WID.    | TH=22 | FT  | WIDTH=24 FT |      |      | WID.    | TH=48 | FT  | WIDT    | H=72 | FT  |
|              |         | IGRDS EQUIVALENTS (NUMBER OF LANES AT LANE WIDTH) |       |      |         |        |      |         |       |     |             |      |      |         |       |     |         |      |     |
|              |         |                                                   | 1@ 9' |      | 1 @ 10' |        |      | 1 @ 11' |       |     | 1 @ 12'     |      |      | 2 @ 12' |       |     | 3 @ 12' |      |     |
| RADIUS (FT)  | E(%)    | Lt                                                | Lr    | w    | Lt      | Lr     | w    | Lt      | Lr    | w   | Lt          | Lr   | w    | Lt      | Lr    | w   | Lt      | Lr   | w   |
| 20000        | 2.1     | 180                                               | 180   | 0.0  | 180     | 180    | 0.0  | 180     | 180   | 0.0 | 180         | 180  | 0.0  | 180     | 180   | 0.0 | 180     | 180  | 0.0 |
| 15000        | 2.1     | 180                                               | 180   | 0.0  | 180     | 180    | 0.0  | 180     | 180   | 0.0 | 180         | 180  | 0.0  | 180     | 180   | 0.0 | 180     | 180  | 0.0 |
| 10000        | 2.1     | 180                                               | 180   | 0.0  | 180     | 180    | 0.0  | 180     | 180   | 0.0 | 180         | 180  | 0.0  | 180     | 180   | 0.0 | 180     | 180  | 0.0 |
| 7000         | 2.1     | 180                                               | 180   | 0.0  | 180     | 180    | 0.0  | 180     | 180   | 0.0 | 180         | 180  | 0.0  | 180     | 180   | 0.0 | 180     | 180  | 0.0 |
| 5000         | 2.8     | 135                                               | 180   | 0.0  | 135     | 180    | 0.0  | 135     | 180   | 0.0 | 135         | 180  | 0.0  | 135     | 180   | 0.0 | 135     | 180  | 0.0 |
| 4000         | 3.4     | 112                                               | 180   | 0.0  | 112     | 180    | 0.0  | 112     | 180   | 0.0 | 112         | 180  | 0.0  | 112     | 180   | 0.0 | 112     | 180  | 0.0 |
| 3000         | 4.4     | 86                                                | 180   | 0.0  | 86      | 180    | 0.0  | 86      | 180   | 0.0 | 86          | 180  | 0.0  | 86      | 180   | 0.0 | 115     | 240  | 0.0 |
| 2500         | 5.0     | 40                                                | 180   | 3.3  | 43      | 180    | 2.3  | 76      | 180   | 0.0 | 76          | 180  | 0.0  | 84      | 200   | 0.0 | 110     | 260  | 0.0 |
| 2250         | 5.4     | 40                                                | 180   | 3.4  | 43      | 180    | 2.4  | 70      | 180   | 0.0 | 70          | 180  | 0.0  | 86      | 220   | 0.0 | 109     | 280  | 0.0 |
| 2000         | 5.9     | 40                                                | 180   | 3.5  | 42      | 180    | 2.5  | 65      | 180   | 0.0 | 65          | 180  | 0.0  | 86      | 240   | 0.0 | 114     | 320  | 0.0 |
| 1750         | 6.4     | 40                                                | 180   | 3.6  | 42      | 180    | 2.6  | 60      | 180   | 0.0 | 60          | 180  | 0.0  | 86      | 260   | 0.0 | 112     | 340  | 0.0 |
| 1500         | 7.0     | 40                                                | 180   | 3.8  | 42      | 180    | 2.8  | 54      | 180   | 0.0 | 54          | 180  | 0.0  | 84      | 280   | 0.0 | 108     | 360  | 0.0 |
| 1300         | 7.5     | 39                                                | 180   | 4.0  | 46      | 200    | 3.0  | 49      | 200   | 2.0 | 56          | 200  | 0.0  | 84      | 300   | 0.0 | 112     | 400  | 0.0 |
| 1150         | 7.8     | 43                                                | 200   | 4.1  | 46      | 200    | 3.1  | 48      | 200   | 2.0 | 54          | 200  | 0.0  | 81      | 300   | 0.0 | 108     | 400  | 0.0 |
| 1000         | 8.0     | 43                                                | 200   | 4.3  | 46      | 200    | 3.3  | 53      | 220   | 2.3 | 58          | 220  | 0.0  | 84      | 320   | 0.0 | 111     | 420  | 0.0 |
| ₩ 964        | 8.0     | 43                                                | 200   | 4.3  | 46      | 200    | 3.3  | 53      | 220   | 2.3 | 58          | 220  | 0.0  | 84      | 320   | 0.0 | 111     | 420  | 3.9 |

Lt, Lr & w VALUES IN FEET.

FOR PAVEMENT WIDTHS GREATER THAN 72 FEET USE Lr VALUES DEVELOPED BY IGRDS.

TC-5

DESIGN FACTORS FOR A DESIGN SPEED OF 60 MPH (RURAL) USING E= 8% MAX.

| DESIGN VELOCITY=60 |      | WIDT | WIDTH=18 FT |     |        | WIDTH=20 FT |      |       | WIDTH=22 FT |      |      | WIDTH=24 FT |       |     | WIDTH=48 FT |     |     | WIDTH=72 FT |     |  |
|--------------------|------|------|-------------|-----|--------|-------------|------|-------|-------------|------|------|-------------|-------|-----|-------------|-----|-----|-------------|-----|--|
|                    |      |      |             | IGF | RDS EC | QUIV ALI    | ENTS | (NUMB | ER OF       | LANE | S AT | LANE        | WIDTH | 1)  |             |     |     |             |     |  |
|                    |      |      | 1 @ 9'      |     |        | 1 @ 10'     |      |       | 1 @ 11'     |      |      | 1 @ 12'     |       |     | 2 @ 12'     |     |     | 3 @ 12'     |     |  |
| RADIUS(FT)         | E(%) | Lt   | Lr          | w   | Lt     | Lr          | w    | Lt    | Lr          | w    | Lt   | Lr          | w     | Lt  | Lr          | w   | Lt  | Lr          | w   |  |
| 20000              | 2.1  | 180  | 180         | 0.0 | 180    | 180         | 0.0  | 180   | 180         | 0.0  | 180  | 180         | 0.0   | 180 | 180         | 0.0 | 180 | 180         | 0.0 |  |
| 15000              | 2.1  | 180  | 180         | 0.0 | 180    | 180         | 0.0  | 180   | 180         | 0.0  | 180  | 180         | 0.0   | 180 | 180         | 0.0 | 180 | 180         | 0.0 |  |
| 10000              | 2.1  | 180  | 180         | 0.0 | 180    | 180         | 0.0  | 180   | 180         | 0.0  | 180  | 180         | 0.0   | 180 | 180         | 0.0 | 180 | 180         | 0.0 |  |
| 7000               | 2.4  | 158  | 180         | 0.0 | 158    | 180         | 0.0  | 158   | 180         | 0.0  | 158  | 180         | 0.0   | 158 | 180         | 0.0 | 158 | 180         | 0.0 |  |
| 5000               | 3.3  | 115  | 180         | 0.0 | 115    | 180         | 0.0  | 115   | 180         | 0.0  | 115  | 180         | 0.0   | 115 | 180         | 0.0 | 115 | 180         | 0.0 |  |
| 4000               | 4.0  | 95   | 180         | 0.0 | 95     | 180         | 0.0  | 95    | 180         | 0.0  | 95   | 180         | 0.0   | 95  | 180         | 0.0 | 116 | 220         | 0.0 |  |
| 3000               | 5.0  | 76   | 180         | 0.0 | 76     | 180         | 0.0  | 76    | 180         | 0.0  | 76   | 180         | 0.0   | 84  | 200         | 0.0 | 118 | 280         | 0.0 |  |
| 2500               | 5.8  | 40   | 180         | 3.4 | 43     | 180         | 2.4  | 66    | 180         | 0.0  | 66   | 180         | 0.0   | 87  | 240         | 0.0 | 116 | 320         | 0.0 |  |
| 2250               | 6.2  | 40   | 180         | 3.5 | 42     | 180         | 2.5  | 61    | 180         | 0.0  | 61   | 180         | 0.0   | 89  | 260         | 0.0 | 116 | 340         | 0.0 |  |
| 2000               | 6.7  | 40   | 180         | 3.6 | 42     | 180         | 2.6  | 57    | 180         | 0.0  | 57   | 180         | 0.0   | 88  | 280         | 0.0 | 113 | 360         | 0.0 |  |
| 1750               | 7.2  | 40   | 180         | 3.8 | 47     | 200         | 2.8  | 53    | 180         | 0.0  | 59   | 200         | 0.0   | 88  | 300         | 0.0 | 117 | 400         | 0.0 |  |
| 1500               | 7.7  | 44   | 200         | 3.9 | 46     | 200         | 2.9  | 55    | 200         | 0.0  | 60   | 220         | 0.0   | 88  | 320         | 0.0 | 115 | 420         | 0.0 |  |
| 1300               | 8.0  | 43   | 200         | 4.1 | 50     | 220         | 3.1  | 58    | 220         | 2.0  | 58   | 220         | 0.0   | 84  | 320         | 0.0 | 116 | 440         | 0.0 |  |
| <b>⊕</b> 1204      | 8.0  | 43   | 200         | 4.2 | 50     | 220         | 3.2  | 58    | 220         | 2.2  | 58   | 220         | 0.0   | 84  | 320         | 0.0 | 116 | 440         | 0.0 |  |

NOTE:

Lt, Lr & w VALUES IN FEET.

FOR PAVEMENT WIDTHS GREATER THAN 72 FEET USE Lr VALUES DEVELOPED BY IGRDS.

## DESIGN FACTORS FOR A DESIGN SPEED OF 65 MPH (RURAL) USING E= 8% MAX.

| DESIGN VELOCITY=65 |      | WIDT | WIDTH=18 FT |      |       | H=20    | FT    | WIDT  | H=22    | FT    | WIDT | H=24    | FT     | WIDTH=48 FT |         |     | WIDTH | - <sub>T</sub> |     |
|--------------------|------|------|-------------|------|-------|---------|-------|-------|---------|-------|------|---------|--------|-------------|---------|-----|-------|----------------|-----|
|                    |      |      |             | IGRE | S EQI | JIVALE  | NTS ( | NUMBE | R OF    | LANES | AT L | ANE V   | VIDTH) |             |         |     |       |                |     |
|                    |      |      | 1@ 9'       |      |       | 1 @ 10' |       |       | 1 @ 11' |       |      | 1 @ 12' |        |             | 2 @ 12' |     |       | 3 @ 12'        |     |
| RADIUS(FT)         | E(%) | Lt   | Lr          | w    | Lt    | Lr      | w     | Lt    | Lr      | w     | Lt   | Lr      | w      | Lt          | Lr      | w   | Lt    | Lr             | w   |
| 20000              | 2.1  | 200  | 200         | 0.0  | 200   | 200     | 0.0   | 200   | 200     | 0.0   | 200  | 200     | 0.0    | 200         | 200     | 0.0 | 200   | 200            | 0.0 |
| 15000              | 2.1  | 200  | 200         | 0.0  | 200   | 200     | 0.0   | 200   | 200     | 0.0   | 200  | 200     | 0.0    | 200         | 200     | 0.0 | 200   | 200            | 0.0 |
| 10000              | 2.1  | 200  | 200         | 0.0  | 200   | 200     | 0.0   | 200   | 200     | 0.0   | 200  | 200     | 0.0    | 200         | 200     | 0.0 | 200   | 200            | 0.0 |
| 7000               | 2.7  | 156  | 200         | 0.0  | 156   | 200     | 0.0   | 156   | 200     | 0.0   | 156  | 200     | 0.0    | 156         | 200     | 0.0 | 156   | 200            | 0.0 |
| 5000               | 3.7  | 114  | 200         | 0.0  | 114   | 200     | 0.0   | 114   | 200     | 0.0   | 114  | 200     | 0.0    | 114         | 200     | 0.0 | 125   | 220            | 0.0 |
| 4000               | 4.4  | 96   | 200         | 0.0  | 96    | 200     | 0.0   | 96    | 200     | 0.0   | 96   | 200     | 0.0    | 96          | 200     | 0.0 | 125   | 260            | 0.0 |
| 3000               | 5.6  | 75   | 200         | 0.0  | 75    | 200     | 0.0   | 75    | 200     | 0.0   | 75   | 200     | 0.0    | 98          | 260     | 0.0 | 128   | 340            | 0.0 |
| 2500               | 6.5  | 44   | 200         | 3.5  | 47    | 200     | 2.5   | 65    | 200     | 0.0   | 65   | 200     | 0.0    | 97          | 300     | 0.0 | 130   | 400            | 0.0 |
| 2250               | 6.9  | 44   | 200         | 3.6  | 47    | 200     | 2.6   | 61    | 200     | 0.0   | 67   | 220     | 0.0    | 98          | 320     | 0.0 | 128   | 420            | 0.0 |
| 2000               | 7.4  | 44   | 200         | 3.7  | 51    | 220     | 2.7   | 57    | 200     | 0.0   | 63   | 220     | 0.0    | 97          | 340     | 0.0 | 125   | 440            | 0.0 |
| 1750               | 7.8  | 48   | 220         | 3.9  | 51    | 220     | 2.9   | 60    | 220     | 0.0   | 65   | 240     | 0.0    | 97          | 360     | 0.0 | 124   | 460            | 0.0 |
| 1500               | 8.0  | 48   | 220         | 4.1  | 55    | 240     | 3.1   | 58    | 240     | 2.0   | 63   | 240     | 0.0    | 95          | 360     | 0.0 | 126   | 480            | 0.0 |
| <b>⊕</b> 1488      | 8.0  | 48   | 220         | 4.1  | 55    | 240     | 3.1   | 58    | 240     | 2.0   | 63   | 240     | 0.0    | 95          | 360     | 0.0 | 126   | 480            | 0.0 |

NOTE:

Lt, Lr & w VALUES IN FEET.

FOR PAVEMENT WIDTHS GREATER THAN 72 FEET USE Lr VALUES DEVELOPED BY IGRDS.

| DESIGN        | DESIGN FACTORS FOR A DESIGN SPEED OF 70 MPH (RURAL) USING E= 8% MAX. |     |       |             |                                                |         |             |     |             |     |             |         |             |     |      |     |         |     |     |
|---------------|----------------------------------------------------------------------|-----|-------|-------------|------------------------------------------------|---------|-------------|-----|-------------|-----|-------------|---------|-------------|-----|------|-----|---------|-----|-----|
| DESIGN VELOCI | DESIGN VELOCITY=70 WIDTH=18 FT                                       |     |       | WIDTH=20 FT |                                                |         | WIDTH=22 FT |     | WIDTH=24 FT |     | WIDTH=48 FT |         | WIDTH=72 FT |     | Т    |     |         |     |     |
|               |                                                                      |     |       | IGF         | DS EQUIVALENTS (NUMBER OF LANES AT LANE WIDTH) |         |             |     |             |     |             |         |             |     |      |     |         |     |     |
|               |                                                                      |     | 1@ 9' |             |                                                | 1 @ 10' |             |     | 1 @ 11'     |     |             | 1 @ 12' |             | 2   | @ 12 | 1   | 3 @ 12' |     |     |
| RADIUS (FT)   | E(%)                                                                 | Lt  | Lr    | w           | Lt                                             | Lr      | w           | Lt  | Lr          | w   | Lt          | Lr      | w           | Lt  | Lr   | w   | Lt      | Lr  | w   |
| 20000         | 2.1                                                                  | 220 | 220   | 0.0         | 220                                            | 220     | 0.0         | 220 | 220         | 0.0 | 220         | 220     | 0.0         | 220 | 220  | 0.0 | 220     | 220 | 0.0 |
| 15000         | 2.1                                                                  | 220 | 220   | 0.0         | 220                                            | 220     | 0.0         | 220 | 220         | 0.0 | 220         | 220     | 0.0         | 220 | 220  | 0.0 | 220     | 220 | 0.0 |
| 10000         | 2.2                                                                  | 210 | 220   | 0.0         | 210                                            | 220     | 0.0         | 210 | 220         | 0.0 | 210         | 220     | 0.0         | 210 | 220  | 0.0 | 210     | 220 | 0.0 |
| 7000          | 3.0                                                                  | 154 | 220   | 0.0         | 154                                            | 220     | 0.0         | 154 | 220         | 0.0 | 154         | 220     | 0.0         | 154 | 220  | 0.0 | 154     | 220 | 0.0 |
| 5000          | 4.1                                                                  | 113 | 220   | 0.0         | 113                                            | 220     | 0.0         | 113 | 220         | 0.0 | 113         | 220     | 0.0         | 113 | 220  | 0.0 | 134     | 260 | 0.0 |
| 4000          | 5.0                                                                  | 93  | 220   | 0.0         | 93                                             | 220     | 0.0         | 93  | 220         | 0.0 | 93          | 220     | 0.0         | 101 | 240  | 0.0 | 126     | 300 | 0.0 |
| 3000          | 6.3                                                                  | 74  | 220   | 0.0         | 74                                             | 220     | 0.0         | 74  | 220         | 0.0 | 74          | 220     | 0.0         | 100 | 300  | 0.0 | 127     | 380 | 0.0 |
| 2500          | 7.2                                                                  | 49  | 220   | 3.6         | 52                                             | 220     | 2.6         | 65  | 220         | 0.0 | 65          | 220     | 0.0         | 100 | 340  | 0.0 | 129     | 440 | 0.0 |
| 2250          | 7.6                                                                  | 48  | 220   | 3.7         | 51                                             | 220     | 2.7         | 61  | 220         | 0.0 | 67          | 240     | 0.0         | 100 | 360  | 0.0 | 128     | 460 | 0.0 |
| 2000          | 8.0                                                                  | 48  | 220   | 3.9         | 56                                             | 240     | 2.9         | 58  | 220         | 0.0 | 63          | 240     | 0.0         | 95  | 360  | 0.0 | 126     | 480 | 0.0 |
| ₩ 1821        | 8.0                                                                  | 45  | 220   | 4.0         | 55                                             | 240     | 3.0         | 58  | 240         | 2.0 | 63          | 240     | 0.0         | 95  | 360  | 0.0 | 126     | 480 | 0.0 |

NOTE:

Lt, Lr & w VALUES IN FEET.

FOR PAVEMENT WIDTHS GREATER THAN 72 FEET USE Lr VALUES DEVELOPED BY IGRDS.

MINIMUM ALLOWABLE RADIUS

#### STANDARD SYMBOLS

| LOCATION  ALIGNMENT ON WHICH THE PROPOSED RIGHT-OF-WAY AND CONSTRUCTION IS BASED.  STANDARD PAVEMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NCAPPROXIMATE MAXIMUM SAFE SPEED IN MILES PER HOUR WITH NO SUPERELEVATION. FACTORS APPLY ONLT TO URBAN LOW SPEED CONDITIONS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Lr LENGTH OF TRANSITION CURVE MEASURED ALONG BASELINE. WHERE NO TRANSITION CURVE IS APPLIED Lr IS LENGTH OF SUPERELEVATION RUNOFF SECTION.  W OR PW WIDTH OF STANDARD PAVEMENT.  ZT DISTANCE FROM TRANSITIONED BASELINE TO EDGES OF TRANSITIONED PAVEMENT WIDENING.  E RATE OF SUPERELEVATION.  F SAFE SIDE FRICTION FACTOR.  S AMOUNT OF SUPERELEVATION TO BE APPLIED TO THE BASELINE GRADE TO OBTAIN THE ELEVATIONS OF THE EDGES OF TRANSITIONED PAVEMENT.  C DIFFERENCE IN ELEVATION BETWEEN BASELINE (CENTER) AND EDGE OF PAVEMENT FOR STANDARD PAVEMENT CROWN.  Lt STANDARD PAVEMENT CROWN TRANSITION OR TANGENT RUNOUT SECTION.  CP CHORD POINT (1/10 INCREMENTS OF TRANSITION CURVE).  NPC NORMAL PAVEMENT CROWN. |

ALL DISTANCES (HORIZONTAL AND VERTICAL) ARE MEASURED IN FEET.

SPECIFICATION REFERENCE TRANSITION CURVES FOR RURAL AND URBAN HIGHWAYS AND STREET CONDITIONS

REV. 1/07

### URBAN CONDITION

URBAN CONDITIONS APPLY TO URBAN <u>STREET</u> SYSTEMS AND ANY OTHER ROAD WITH PRESENT OR FUTURE URBAN <u>STREET</u> OPERATING CONDITIONS.

THESE TABLES CONTAIN THE MINIMUM SUPERELEVATION RATES AND TRANSITION LENGTHS FOR STANDARD URBAN PAVEMENT WIDTHS THROUGH A RANGE OF DESIGN VELOCITIES CONSIDERED MOST LIKELY TO BE USED IN URBAN ROAD DESIGN.

DEFINITIONS FOR THE STANDARD SYMBOLS USED THROUGHOUT THESE TABLES ARE FOUND ON SHEET 802.01.

A TABLE FOR "LOW SPEED URBAN" DESIGNS IS ON SHEET 802.24 WITH A RANGE OF STANDARD PAVEMENT WIDTHS (W), SUPERELEVATION RUNOFF (Lr), AND RADII OF CURVE WHEN SUPERELEVATED BY AN AMOUNT EQUAL TO THE NORMAL CROWN AND THE APPROXIMATE MAXIMUM SAFE SPEEDS (DV) AFFORDED THEREBY. VALUES IN THIS TABLE CAN BE USED ON STREETS WITH OPERATING SPEEDS LESS THAN OR EQUAL TO 45 MPH. ALSO SHOWN ARE THE APPROXIMATE MAXIMUM SAFE SPEEDS (NC) WITH NO SUPERELEVATION. VALUES FOR (NC) CAN BE USED ON URBAN ARTERIAL, COLLECTOR, AND LOCAL STREETS.

FOR MINIMUM DESIGN FACTORS FOR VARIOUS DESIGN SPEEDS FOR URBAN CONDITIONS SEE SHEETS 802.25 THRU 802.33

WHEN URBAN CONDITIONS APPLY THERE <u>WILL</u> BE NO BASELINE TRANSITION OR PAVEMENT WIDENING. THE LENGTH OF SUPERELEVATION RUNOFF (Lr) DETERMINES THE LENGTH OF SUPERELEVATION TRANSITION THROUGH WHICH THE OUTER EDGE OF PAVEMENT IS RAISED ABOVE THE BASELINE GRADE TO A MAXIMUM OF E ( $\frac{W}{2}$ ). SEE SHEET 802.07 FOR A GRAPHICAL ILLUSTRATION OF THE APPLICATION OF THIS CORRECTION.

FOR CURVE RADII NOT LISTED IN TABLES REFER TO SHEET 802.22 TO CALCULATE SUPERELEVATION RUNOFF (Lr).

Lr SHOULD BE SHOWN ON THE PLANS FOR ALL CURVES.

E SHOULD BE SHOWN ON THE PLANS FOR ALL CURVES WITH URBAN STREET CONDITIONS.

FOR GRAPHICAL ILLUSTRATION OF DESIGN SUPERELEVATION RATES FOR URBAN CONDITIONS SEE SHEET 802.19.

FOR ADDITIONAL GENERAL INSTRUCTIONS (BOTH URBAN AND RURAL) SEE SHEET 802.04.

EXPLANATION OF TABLES AND INSTRUCTIONS FOR USE URBAN CONDITION

REV. 1/07 802.02

### RURAL CONDITION

RURAL CONDITIONS APPLY TO INTERSTATE, ARTERIAL, PRIMARY AND SECONDARY SYSTEMS OR TO ANY OTHER ROAD WITH RURAL TYPE DESIGN AND OPERATING CONDITIONS.

THESE TABLES CONTAIN THE MINIMUM ALLOWABLE SUPERELEVATION, TRANSITION LENGTHS, AND WIDENING CORRECTIONS FOR STANDARD RURAL PAVEMENT WIDTHS THROUGH A RANGE OF DESIGN VELOCITIES CONSIDERED MOST LIKELY TO BE USED IN RURAL HIGHWAY DESIGN.

DEFINITIONS FOR THE STANDARD SYMBOLS USED THROUGHOUT THESE TABLES ARE FOUND ON SHEET 802.01.

FOR MINIMUM DESIGN FACTORS FOR VARIOUS DESIGN SPEEDS FOR RURAL CONDITIONS SEE SHEETS 802.34 THRU 802.44.

ON CURVES WITH GREATER THAN 2865 FT RADIUS, THERE WILL BE NO SPIRAL TRANSITION OR PAVEMENT WIDENING. PAVEMENT WILL BE SUPERELEVATED BY AN AMOUNT EQUAL TO THE RATE SHOWN IN THE TABLES. SEE SHEET 802.06 FOR A GRAPHICAL ILLUSTRATION OF THE APPLICATION OF THIS CORRECTION.

ON CURVES WITH PAVEMENT WIDTHS OF 24'OR WIDER AND A RADIUS OF 882 FT. OR GREATER, THERE WILL BE NO SPIRAL TRANSITION OR PAVEMENT WIDENING. PAVEMENT WILL BE SUPERELEVATED BY AN AMOUNT EQUAL TO THE RATE SHOWN IN THESE TABLES.

FOR CURVE RADII NOT LISTED IN TABLES, REFER TO SHEET 802.22 TO CALCULATE SUPERELEVATION RUNOFF LENGTH (Lr) AND PAVEMENT WIDENING (w).

Lr AND E SHOULD BE SHOWN ON THE PLANS FOR ALL CURVES ..

FOR GRAPHICAL ILLUSTRATION OF DESIGN SUPERELEVATION RATES FOR RURAL CONDITIONS SEE SHEET 802.20.

FOR ADDITIONAL GENERAL INSTRUCTIONS (BOTH URBAN AND RURAL) SEE SHEET 802.04.

SEE SHEET 802.05 FOR A GRAPHICAL ILLUSTRATION OF SPIRAL TRANSITIONS.

# EXPLANATION OF TABLES AND INSTRUCTIONS FOR USE RURAL CONDITION

### GENERAL CONDITION

ALL ORIGINAL CROSS SECTIONS SHALL BE TAKEN FROM THE BASELINE AT STATIONS, PLUS FIFTIES, AND UNUSUAL BREAKS IN THE GROUND AS ON TANGENT ALIGNMENT.

WHERE A PART OR ALL OF A SUPERELEVATION TRANSITION CURVE FALLS ON A VERTICAL CURVE, ELEVATIONS ON THE VERTICAL CURVE SHOULD BE COMPUTED FOR THE POSITIONS GIVEN ON SHEET 802.16 FOR CROWN TRANSITIONS, SHEET 802.17 FOR URBAN PROJECTS AND SHEET 802.18 FOR RURAL PROJECTS. THESE ELEVATIONS AND PLUSES SHOULD BE SHOWN ON THE PLANS FOR THE CONVENIENCE OF THE SURVEY PARTY IN STAKING OUT THE PROJECT. THROUGHOUT THESE SECTIONS OF THE GRADE, ELEVATIONS AT EVEN STATIONS AND PLUS FIFTIES SHOULD BE OMITTED.

SLOPE STAKES SHOULD BE SET AT THE POSITIONS ON THE TRANSITION GIVEN ON SHEETS 802.16, 802.17 AND 802.18 AND GROUND CROSS SECTIONS TAKEN AT THESE POSITIONS OMITTING THE STATIONS AND PLUS FIFTIES THROUGHOUT THE TRANSITION. IF UNUSUAL BREAKS IN THE GROUND OCCUR, ADDITIONAL SECTIONS SHOULD, OF COURSE, BE TAKEN. ADDITIONAL SECTIONS SHOULD ALSO BE TAKEN WHERE LOCATION IS THROUGH ROCK CUT IN ANTICIPATION OF UNUSUAL BREAKAGE WHICH MAY OCCUR DURING CONSTRUCTION.

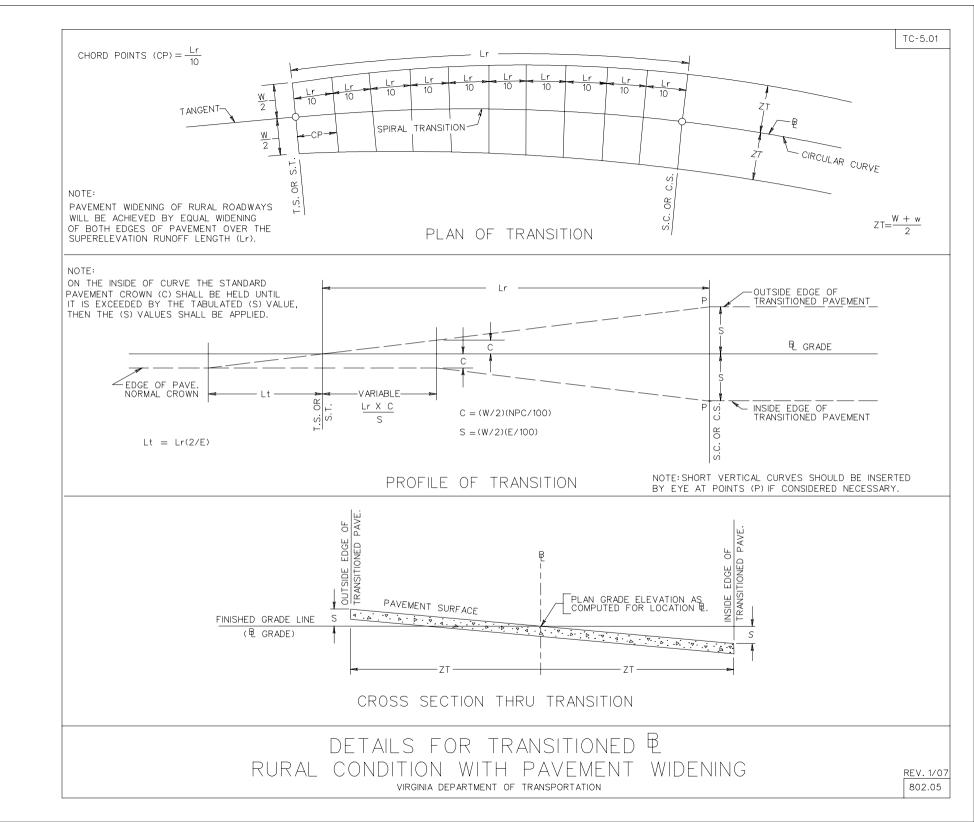
AFTER ROUGH GRADING HAS BEEN DONE, FINE GRADING (BLUE TOP) AND FORM STAKES SHOULD BE SET AT THE POSITIONS GIVEN ON SHEET 802.16 FOR CROWN TRANSITIONS, SHEET 802.17 FOR URBAN PROJECTS OR AS GIVEN ON SHEET 802.18 FOR RURAL PROJECTS.

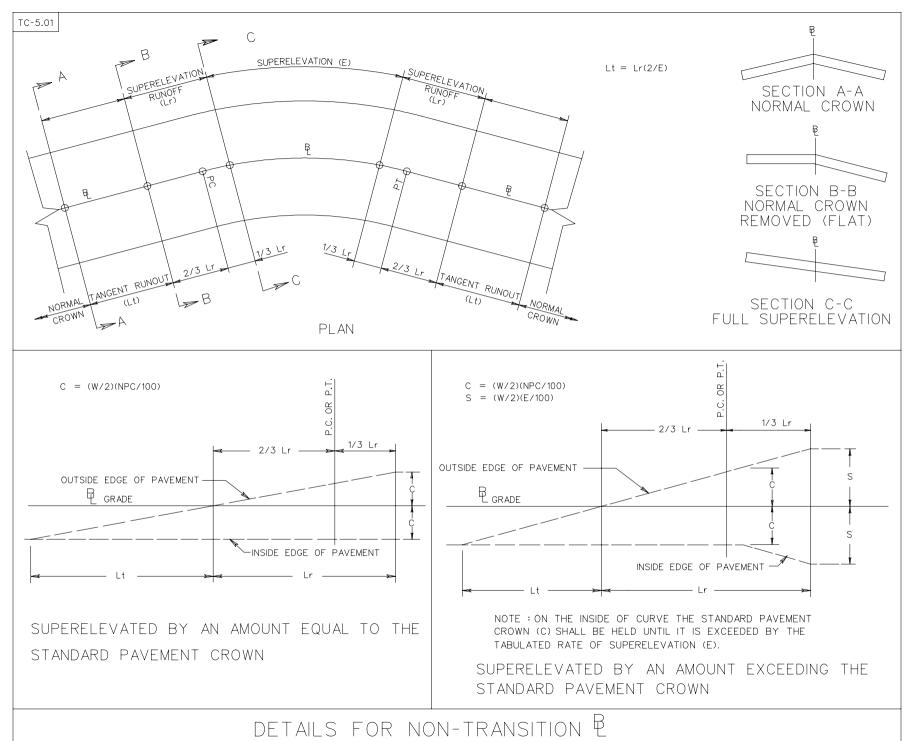
FINAL CROSS SECTIONS SHOULD, OF COURSE, BE TAKEN AT THOSE POSITIONS AT WHICH THE SLOPE STAKE SECTIONS WERE TAKEN. WHERE UNUSUAL BREAKAGE IN ROCK OCCURS, AND THIS WAS NOT ANTICIPATED, ADDITIONAL FINAL SECTIONS SHOULD BE TAKEN AND ORIGINAL GROUND SECTIONS INTERPOLATED.

BASELINE STAKES SHOULD BE SET AT ALL P.C.'S, P.T.'S, T.S.'S, S.T.'S, S.C.'S, AND C.S.'S IN STAKING OUT ALIGNMENT BUT SLOPE STAKES NEED NOT BE SET NOR CROSS SECTIONS TAKEN AT P.C.'S OR P.T.'S EXCEPT WHERE CALLED FOR IN THE ACCOMPANYING TABLES. THE TRANSITION WILL TAKE ITS FORM FROM THE POSITIONS GIVEN ON SHEETS 802.17 AND 802.18.

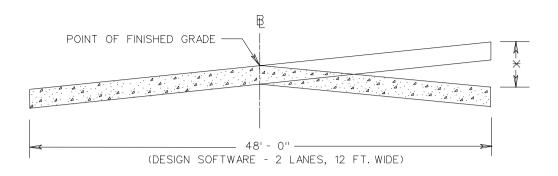
THE RIGHT OF WAY SHALL, IN ALL CASES, BE REFERENCED FROM THE BASELINE.

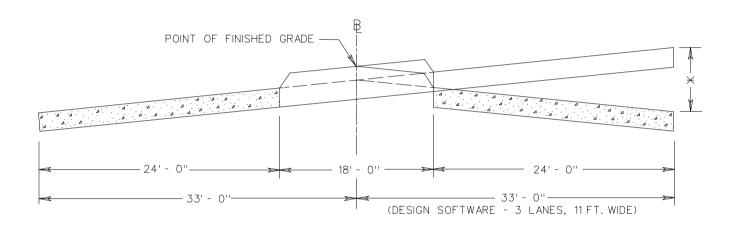
THE DESIGNER SHOULD EXERCISE CAUTION IN THE USE OF COMPOUND AND REVERSE CURVES UNLESS TOPOGRAPHICAL OR RIGHT OF WAY RESTRICTIONS MAKE THEIR USE APPROPIATE. THE USE OF BROKEN-BACK CURVES SHOULD BE AVOIDED EXCEPT WHERE VERY UNUSUAL TOPOGRAPHICAL OR RIGHT OF WAY CONDITIONS MAKE OTHER ALTERNATIVES IMPRACTICAL. THE USE OF BROKEN-BACK CURVES MAY REQUIRE A DESIGN EXCEPTION FROM THE STATE LOCATION AND DESIGN ENGINEER. SEE SHEETS 802.11 THRU 802.14 FOR GENERAL INFORMATION ON COMPOUND, REVERSE AND BROKEN-BACK CURVE INFORMATION. REFER TO APPENDIX A OF THE ROAD DESIGN MANUAL FOR SPECIFIC COMPOUND AND REVERSE CURVE DESIGN INFORMATION.


A DESIGN EXCEPTION IS NOT REQUIRED WHEN USING VALUES FROM SHEETS 802.24 THRU 802.44 SINCE THESE TABLES WERE DERIVED WITHIN AASHTO GUIDELINES.


REFER TO CHAPTER 4 OF AASHTO'S <u>A POLICY ON GEOMETRIC DESIGN OF HIGHWAYS AND STREETS</u> FOR INFORMATION ON THE USE OF 18' PAVEMENT WIDTHS (9' LANE WIDTHS).

ALL TANGENT RUNOUT SECTION (Lt) VALUES AND SUPERELEVATION RUNOFF LENGTHS (Lr) LISTED IN THE TABLES HAVE BEEN ROUNDED UP TO THE NEAREST FOOT. ALL Lt VALUES ARE BASED ON A 2% CROWN.

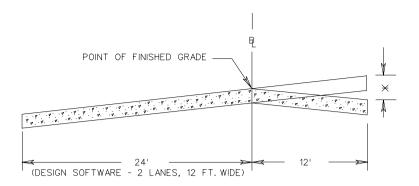

EXPLANATION OF TABLES AND INSTRUCTIONS FOR USE GENERAL CONDITION


REV. 1/07 802.04

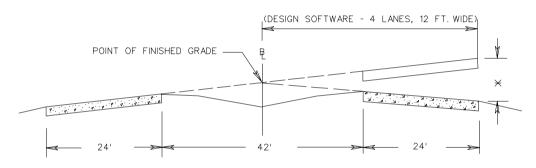




REV. 1/07 URBAN CONDITIONS AND RURAL CONDITIONS WITHOUT PAVEMENT WIDENING
802.06 VIRGINIA DEPARTMENT OF TRANSPORTATION





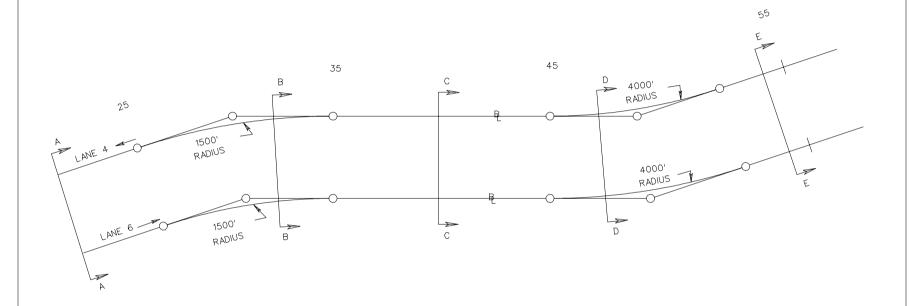


\* THE ELEVATION DIFFERENTIAL BETWEEN NORMAL CROWN AND MAXIMUM SUPERELEVATION, RELATIVE TO THE BASELINE PROFILE.

ADDITIONAL INFORMATION MAY BE OBTAINED FROM A POLICY ON GEOMETRIC DESIGN OF HIGHWAYS AND STREETS (AASHTO) BOOK, CHAPTER III - ELEMENTS OF DESIGN (SUPERELEVATION RUNOFF).

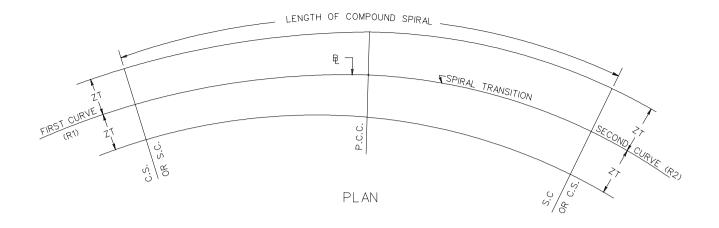
ON STANDARD TC-5.01ULS, TC-5.01U , AND TC-5.01R (WITHOUT PAVEMENT WIDENING) SUPERELEVATED CURVES, POSITION THE SUPERELEVATION RUNOFF SECTION (Lr) TWO THIRDS (2/3) ON THE TANGENT AND ONE THIRD (1/3) INTO THE CURVE. STATIONS AND ELEVATIONS FOR THESE TRANSITIONS WILL NEED TO BE COMPUTED FOR ALL CHORD POINTS AND SHOWN ON THE PROFILES.

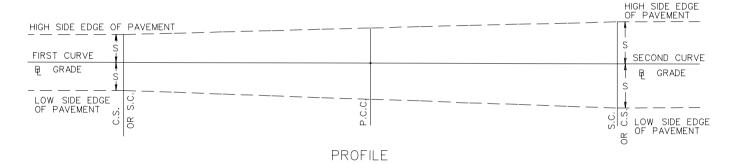


THE PAVEMENT WIDTHS SHOWN IN THE STANDARD TC-5.01 TABLES ON SHEET 802.25 THROUGH 802.44 REPRESENT TWICE THE DISTANCE FROM THE CROWNLINE TO THE EDGE OF PAVEMENT ON THE HIGH SIDE.




\* THE ELEVATION DIFFERENTIAL BETWEEN NORMAL CROWN AND MAXIMUM SUPERELEVATION, RELATIVE TO THE BASELINE PROFILE.


ADDITIONAL INFORMATION MAY BE OBTAINED FROM A POLICY ON GEOMETRIC DESIGN OF HIGHWAYS AND STREETS (AASHTO) BOOK, CHAPTER III - ELEMENTS OF DESIGN (SUPERELEVATION RUNOFF).

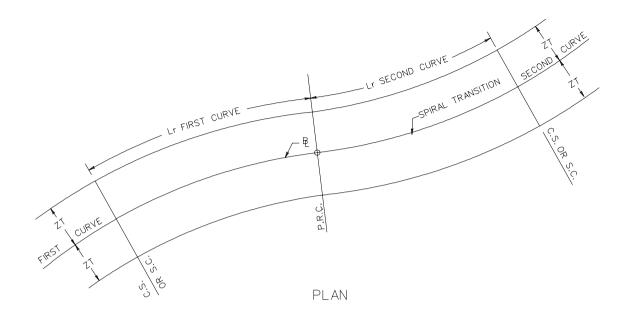

PROJECTS IN WHICH LANES MAY BE ADDED IN THE FUTURE IN THE MEDIAN AREA SHOULD BE DESIGNED WITH THE CONSTRUCTION BASELINE AND POINT OF FINISHED GRADE LOCATED IN THE MIDDLE OF THE MEDIAN. SUPERELEVATION IS TO BE ROTATED FROM THIS BASELINE POINT. THIS WILL PREVENT UNEVEN PAVEMENT PROBLEMS (WHEN ADDITIONAL LANES ARE ADDED IN THE MEDIAN AREA) SUCH AS CROSSOVER GRADES AS WELL AS THE NEED FOR RETAINING WALLS, MEDIAN BARRIERS AND SPECIAL DESIGN DRAINAGE STRUCTURES. ADDITIONAL RIGHT OF WAY OR EASEMENTS, IN MOST SITUATIONS, WILL NOT BE REQUIRED.

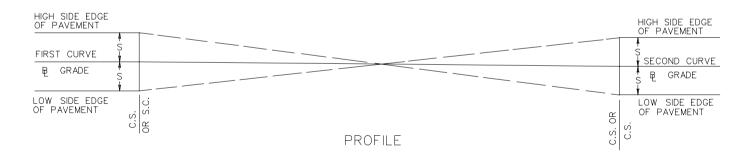
TC-5.01



EXAMPLE FOR FOUR LANE ROADWAYS







#### NOTE:

- 1. FOR COMPOUND CURVES ON OPEN ROADWAYS, THE RATIO OF FLATTER RADIUS (R1) TO THE SHARPER RADIUS (R2) SHALL NOT EXCEED 1.5:1. WHERE PRACTICAL, A DESIRABLE MAXIMUM RATIO OF 1.75:1 SHOULD BE USED.
- 2. FOR COMPOUND CURVES ON RAMPS AND AT INTERSECTIONS, THE RATIO OF THE FLATTER RADIUS (R1) TO THE SHARPER RADIUS (R2) SHALL NOT EXCEED 2:1.
- 3. COMPUTE STRAIGHT LINE WIDENING AND SUPERELEVATION TRANSITION FROM MAXIMUM OF FIRST CURVE TO MAXIMUM OF SECOND CURVE.
- 4. REFER TO CHAPTER 3 OF THE AASHTO GREEN BOOK FOR ADDITIONAL COMPOUND CURVE DESIGN INFORMATION.

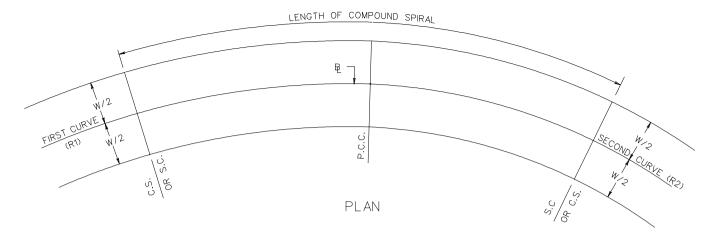
SPECIFICATION REFERENCE METHOD OF APPLYING TC-5.01 ON COMPOUND CURVES RURAL CONDITIONS WITH PAVEMENT WIDENING

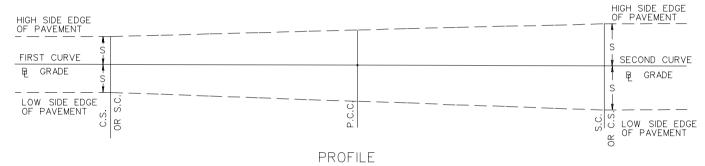
TC-5.01





#### NOTE:


- 1. COMPUTE STRAIGHT LINE WIDENING AND SUPERELEVATION TRANSITION FROM MAXIMUM OF FIRST CURVE TO MAXIMUM OF SECOND CURVE.
- 2. REFER TO CHAPTER 3 OF THE AASHTO'S <u>A POLICY ON THE GEOMETRIC DESIGN OF HIGHWAYS AND STREETS FOR ADDITIONAL REVERSE CURVE DESIGN INFORMATION.</u>

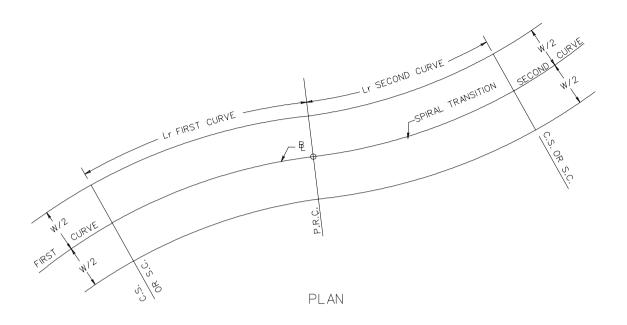

METHOD OF APPLYING TC-5.01 ON REVERSE CURVES RURAL CONDITIONS WITH PAVEMENT WIDENING

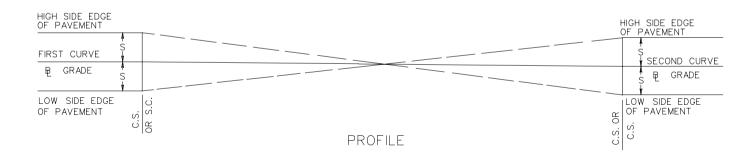
SPECIFICATION REFERENCE

REV. 1/07 802.12









#### NOTE:

- 1. FOR COMPOUND CURVES ON OPEN ROADWAYS, THE RATIO OF FLATTER RADIUS (R1) TO THE SHARPER RADIUS (R2) SHALL NOT EXCEED 1.5:1. WHERE PRACTICAL, A DESIRABLE MAXIMUM RATIO OF 1.75:1 SHOULD BE USED.
- 2. FOR COMPOUND CURVES ON RAMPS AND AT INTERSECTIONS, THE RATIO OF THE FLATTER RADIUS (R1) TO THE SHARPER RADIUS (R2) SHALL NOT EXCEED 2:1.
- 3. COMPUTE SUPERELEVATION TRANSITION FROM MAXIMUM OF FIRST CURVE TO MAXIMUM OF SECOND CURVE. LENGTH OF COMPOUND SPIRAL COMPUTED PER PAGE 802.22.
- 4. REFER TO CHAPTER 3 OF THE AASHTO GREEN BOOK FOR ADDITIONAL COMPOUND CURVE DESIGN INFORMATION.

SPECIFICATION REFERENCE METHOD OF APPLYING TC-5.01 ON COMPOUND CURVES URBAN CONDITIONS & RURAL CONDITIONS WITHOUT PAVEMENT WIDENING







#### NOTE:

- COMPUTE SUPERELEVATION TRANSITION FROM MAXIMUM OF FIRST CURVE TO MAXIMUM OF SECOND CURVE, LENGTH OF SUPERELEVATION RUNOFF (Lr) COMPUTED PER PAGE 802.22.
- 2. REFER TO CHAPTER 3 OF THE AASHTO'S <u>A POLICY ON THE GEOMETRIC DESIGN OF HIGHWAYS AND STREETS</u>
  FOR ADDITIONAL REVERSE CURVE DESIGN INFORMATION.

METHOD OF APPLYING TC-5.01 ON REVERSE CURVES
URBAN CONDITIONS & RURAL CONDITIONS WITHOUT PAVEMENT WIDENING

SPECIFICATION REFERENCE

REV. 1/07

### TRANSITION TABLE

| LENGTH OF TANGENT RUNOUT (Lt) | START/END<br>OF<br>SUPERELEVATION<br>RUNOFF | START/END ( | DISTANCE IN FEET<br>DF SUPERELEVATION | FROM RUNOFF SECTION (L | NORMAL<br>CROWN |     |
|-------------------------------|---------------------------------------------|-------------|---------------------------------------|------------------------|-----------------|-----|
| (20)                          | (Lr)                                        | 1           | 2                                     | 3                      | 4               |     |
| 220                           | 0                                           | 44          | 88                                    | 132                    | 176             | 220 |
| 200                           | 0                                           | 40          | 80                                    | 120                    | 140             | 200 |
| 180                           | 0                                           | 36          | 72                                    | 108                    | 144             | 180 |
| 160                           | 0                                           | 32          | 64                                    | 96                     | 128             | 160 |
| 140                           | 0                                           | 28          | 56                                    | 84                     | 112             | 140 |
| 120                           | 0                                           | 24          | 48                                    | 72                     | 96              | 120 |
| 100                           | 0                                           | 20          | 40                                    | 60                     | 80              | 100 |
| 90                            | 0                                           | 18          | 36                                    | 54                     | 72              | 90  |
| 80                            | 0                                           | 16          | 32                                    | 48                     | 64              | 80  |
| 60                            | 0                                           | 15          | 30                                    | 45                     |                 | 60  |
| 40                            | 0                                           | 20          |                                       |                        |                 | 40  |

#### NOTE:

TABLE LISTS POSTIONS ON TRANSITIONS AT WHICH SLOPE STAKES SHOULD BE SET, CONSTRUCTION AND FINAL CROSS-SECTIONS TAKEN, FINE GRADING STAKES (BLUE TOP) SET, AND FORM STAKES SET (CONCRETE PAVEMENT ONLY).

CROWN TRANSITION / TANGENT RUNOUT (Lt) TABLE

# URBAN CONDITIONS RURAL CONDITIONS WITHOUT PAVEMENT WIDENING

FOR USE WITH FLEXIBLE AND CONCRETE PAVEMENT (Lr POSITIONED 2/3 ±ON TANGENT, 1/3 ±ON CURVE)

| LENGTH OF<br>SUPERELEVATION<br>RUNOFF | END/<br>BEGIN<br>TANGENT<br>RUNOUT |                 | DISTANCE IN FEET FROM P.C. OR P.T. ON TANGENT |      |     |      |    | P.C.<br>OR<br>P.T. |    | ANCE IN FEET F  |     | FULL<br>SUPER<br>ELEVATION<br>(E) |
|---------------------------------------|------------------------------------|-----------------|-----------------------------------------------|------|-----|------|----|--------------------|----|-----------------|-----|-----------------------------------|
| (Lr)                                  | (Lt)                               | 1               | 2                                             | 3    | 4   | 5    | 6  |                    | 7  | 8               | 9   |                                   |
| 480                                   | 320                                | 272             | 224                                           | 176  | 128 | 80   | 32 | STAKE              | 16 | 64              | 112 | 160                               |
| 460                                   | 307                                | 261             | 215                                           | 169  | 123 | 77   | 31 | STAKE              | 15 | 61              | 107 | 153                               |
| 440                                   | 293                                | 249             | 205                                           | 161  | 117 | 73   | 29 | STAKE              | 15 | 59              | 103 | 147                               |
| 420                                   | 280                                | 238             | 196                                           | 154  | 112 | 70   | 28 | STAKE              | 14 | 56              | 98  | 140                               |
| 400                                   | 267                                | 227             | 187                                           | 147  | 107 | 67   | 27 | STAKE              | 13 | 53              | 93  | 133                               |
| 380                                   | 253                                | 215             | 177                                           | 139  | 101 | 63   | 25 | STAKE              | 13 | 51              | 89  | 127                               |
| 360                                   | 240                                | 204             | 168                                           | 132  | 96  | 60   | 24 | STAKE              | 12 | 48              | 84  | 120                               |
| 340                                   | 227                                | 193             | 159                                           | 125  | 91  | 57   | 23 | STAKE              | 11 | 45              | 79  | 113                               |
| 320                                   | 213                                | 181             | 149                                           | 117  | 85  | 53   | 21 | STAKE              | 11 | 43              | 75  | 107                               |
| 300                                   | 200                                | 170             | 140                                           | 110  | 80  | 50   | 20 | STAKE              | 10 | 40              | 70  | 100                               |
| 280                                   | 187                                | 159             | 131                                           | 103  | 75  | 47   | 19 | STAKE              | 9  | 37              | 65  | 93                                |
| 260                                   | 173                                | 147 ×           | 121                                           | 95 X | 69  | 43 × | 17 | STAKE *            | 9  | 35 ×            | 61  | 87                                |
| 240                                   | 160                                | 136 ×           | 112                                           | 88 × | 64  | 40 × | 16 | STAKE *            | 8  | 32 X            | 56  | 80                                |
| 220                                   | 147                                | 125 X           | 103                                           | 81 × | 59  | 37 X | 15 | STAKE *            | 7  | 29 ×            | 51  | 73                                |
| 200                                   | 133                                | 113 ×           | 93                                            | 73 × | 53  | 33 × | 13 | STAKE X            | 7  | 27 ×            | 47  | 67                                |
| 180                                   | 120                                | 102 ×           | 84                                            | 66 × | 48  | 30 × | 12 | STAKE *            | 6  | 24 X            | 42  | 60                                |
| 160                                   | 107                                | 91 <sup>Ж</sup> | 75                                            | 59 X | 43  | 27 X | 11 | STAKE *            | 5  | 21 <sup>Ж</sup> | 37  | 53                                |

#### NOTE :

TABLE GIVING POSITIONS ON CURVES AT WHICH SLOPE STAKES SHOULD BE SET, CONSTRUCTION AND FINAL CROSS-SECTIONS TAKEN, FINE GRADING STAKES (BLUE TOP) SET, AND FORM STAKES SET (CONCRETE PAVEMENT ONLY).

\* DENOTES ADDITIONAL STAKING POSITIONS FOR USE WITH CONCRETE PAVEMENT ONLY.

TABLE I

### RURAL CONDITIONS WITH PAVEMENT WIDENING

FOR USE WITH FLEXIBLE AND CONCRETE PAVEMENT

| LENGTH OF<br>SUPERELEVATION<br>RUNOFF (Lr) | T.S.<br>OR<br>S.T. |      | DISTANCE IN FEET FROM T.S. OR S.T.  ALONG SPIRAL TRANSITION |      |     |       |     |       |     |       | S.C.<br>OR<br>C.S. |
|--------------------------------------------|--------------------|------|-------------------------------------------------------------|------|-----|-------|-----|-------|-----|-------|--------------------|
| RONOLL (EL)                                |                    | 1    | 2                                                           | 3    | 4   | 5     | 6   | 7     | 8   | 9     |                    |
| 480                                        | 0                  | 48   | 96                                                          | 144  | 192 | 240   | 288 | 336   | 384 | 432   | 480                |
| 460                                        | 0                  | 46   | 92                                                          | 138  | 184 | 230   | 276 | 322   | 368 | 414   | 460                |
| 440                                        | 0                  | 44   | 88                                                          | 132  | 176 | 220   | 264 | 308   | 352 | 396   | 440                |
| 420                                        | 0                  | 42   | 84                                                          | 126  | 168 | 210   | 252 | 294   | 336 | 378   | 420                |
| 400                                        | 0                  | 40   | 80                                                          | 120  | 160 | 200   | 240 | 280   | 320 | 360   | 400                |
| 380                                        | 0                  | 38   | 76                                                          | 114  | 152 | 190   | 228 | 266   | 304 | 342   | 380                |
| 360                                        | 0                  | 36   | 72                                                          | 108  | 144 | 180   | 216 | 252   | 288 | 324   | 360                |
| 340                                        | 0                  | 34   | 68                                                          | 102  | 136 | 170   | 204 | 238   | 272 | 306   | 340                |
| 320                                        | 0                  | 32   | 64                                                          | 96   | 128 | 160   | 192 | 224   | 256 | 288   | 320                |
| 300                                        | 0                  | 30   | 60                                                          | 90   | 120 | 150   | 180 | 210   | 240 | 270   | 300                |
| 280                                        | 0                  | 28   | 56                                                          | 84   | 112 | 140   | 168 | 196   | 224 | 252   | 280                |
| 260                                        | 0                  | 26 X | 52                                                          | 78 X | 104 | 130 × | 156 | 182 X | 208 | 234 X | 260                |
| 240                                        | 0                  | 24 X | 48                                                          | 72 X | 96  | 120 X | 144 | 168 X | 192 | 216 X | 240                |
| 220                                        | 0                  | 22 Ж | 44                                                          | 66 X | 88  | 110 * | 132 | 154 * | 176 | 198 X | 220                |
| 200                                        | 0                  | 20 Ж | 40                                                          | 60 X | 80  | 100 × | 120 | 140 X | 160 | 180 X | 200                |
| 180                                        | 0                  | 18 X | 36                                                          | 54 X | 72  | 90 X  | 108 | 126 X | 144 | 162 X | 180                |
| 160                                        | 0                  | 16 X | 32                                                          | 48 X | 64  | 80 X  | 96  | 112 * | 128 | 144 X | 160                |

#### NOTE :

TABLE GIVING POSITIONS ON TRANSITION CURVES AT WHICH SLOPE STAKES SHOULD BE SET, CONSTRUCTION AND FINAL CROSS-SECTIONS TAKEN, FINE GRADING STAKES (BLUE TOP) SET, AND FORM STAKES SET (CONCRETE PAVEMENT ONLY).

\* DENOTES ADDITIONAL STAKING POSITIONS FOR USE WITH CONCRETE PAVEMENT ONLY.

TABLE 2

#### LEGEND

- C- RATE OF CHANGE OF SIDE FRICTION (f) IN FT./SEC.
- e- SUPERELEVATION RATE.
- f- FRICTION FACTOR.
- Lr- LENGTH OF SUPERELEVATION RUNOFF SECTION.
- Lt- LENGTH OF TANGENT RUNOUT SECTION.
- R- RADIUS OF CURVE.
- DV- DESIGN VELOCITY UTILIZING SUPERELEVATION.
- NC- MAXIMUM VELOCITY WITH NO SUPERELEVATION (NORMAL CROWN).

#### URBAN LOW SPEED DESIGN TABLE

| DV/NC<br>(MPH) | MAX. f | С    | MIN.<br>Lr<br>(FEET) |  |  |
|----------------|--------|------|----------------------|--|--|
| 45             | 0.161  | 2.75 | 125                  |  |  |
| 40             | 0.178  | 3.00 | 115                  |  |  |
| 35             | 0.197  | 3.25 | 100                  |  |  |
| 30             | 0.221  | 3.50 | 90                   |  |  |
| 25             | 0.252  | 3.75 | 80                   |  |  |
| 20             | 0.300  | 4.00 | 75                   |  |  |

FRICTION FACTORS (f) FOR ODD VELOCITIES NOT LISTED SHOULD BE DERIVED BY INTERPOLATION.

FOR Lr LENGTHS FOR INTERMEDIATE VELOCITIES NOT LISTED IN TABLE USE THE Lr FOR NEAREST VELOCITY IN TABLE.

#### GENERAL DESIGN CONSIDERATIONS

- WHEN "URBAN LOW SPEED" DESIGNS UTILIZE SUPERELEVATION, THEY WILL BE SUPERELEVATED BY AN AMOUNT EQUAL TO THE NORMAL CROWN (TYPICALLY 2.0%) AND THE APPROXIMATE MAXIMUM SAFE SPEED (DV) AFFORDED THEREBY.
- 2. WHEN "URBAN LOW SPEED" DESIGNS UTILIZE NO SUPERELEVATION, THE APPROXIMATE MAXIMUM SAFE SPEED (NC) IS CALCULATED USING A NEGATIVE NORMAL CROWN (TYPICALLY -2.0 %).
- 3. WHEN THE CURVE IS SUPERELEVATED, THE Lr IS APPLIED IN THE SAME MANNER AS IN URBAN CONDITIONS WITH THE TANGENT RUNOUT (Lt) BEING EQUAL TO THE Lr VALUE. THE TANGENT RUNOUT (Lt) IS ALWAYS ACHIEVED OUTSIDE OF THE SUPERELEVATION RUNOFF SECTION(Lr).
- 4. PLEASE NOTE THAT THE RADIUS VALUES LISTED ON PAGE 802.24 HAVE BEEN ROUNDED UP TO THE NEAREST FOOT.

EXAMPLES

DV = 21 mph

e = +2.0 %

 $f = MAX f \pm INTERPOLATED DIFFERENCE BETWEEN LISTED FRICTION FACTORS$ 

f = 0.300-[1/5(0.300-0.252)]=0.2904 (ROUND TO 0.29)

Lr = 47.2 f DV/C

Ir = 47.2(0.29)(21)/4=71.862 FT.

71.862 <90 THEREFORE Lr=90 FT.

Rmin. =  $DV^2/15(e+f)$ 

Rmin. = (21) / 15(0.02 + 0.29) = 94.83870968 FT.

NC = 37 mph

e = -2.0 %

f = MAX f = INTERPOLATED DIFFERENCE BETWEEN LISTED FRICTION FACTORS

f = 0.197-[2/5(0.197-0.178)]=0.1894 (ROUND TO 0.189)

Rmin. = NC  $^{2}/15(-e + f)$ 

Rmin. =  $(37)^2 / 15(-0.02 + 0.189) = 540.0394477$  FT.

|                | UF    | RBAN LOW | SPEED DE | ESIGN TAB | LE    |       |
|----------------|-------|----------|----------|-----------|-------|-------|
| DV/NC<br>(MPH) | 45    | 40       | 35       | 30        | 25    | 20    |
| MAX. f         | 0.150 | 0.160    | 0.180    | 0.200     | 0.230 | 0.270 |

FRICTION FACTORS (f) FOR ODD VELOCITIES NOT LISTED SHOULD BE DERIVED BY INTERPOLATION.

#### LEGEND

- e- SUPERELEVATION RATE.
- f- FRICTION FACTOR.
- Lr- LENGTH OF SUPERELEVATION RUNOFF SECTION.
- Lt- LENGTH OF TANGENT RUNOUT SECTION.
- R- RADIUS OF CURVE.
- DV- DESIGN VELOCITY UTILIZING SUPERELEVATION.
- NC- MAXIMUM VELOCITY WITH NO SUPERELEVATION (NORMAL CROWN).

#### GENERAL DESIGN CONSIDERATIONS

- 1. WHEN "URBAN LOW SPEED" DESIGNS UTILIZE SUPERELEVATION, THEY WILL BE SUPERELEVATED BY AN AMOUNT EQUAL TO THE NORMAL CROWN (TYPICALLY 2.0%) AND THE APPROXIMATE MAXIMUM SAFE SPEED (DV) AFFORDED THEREBY.
- 2. WHEN "URBAN LOW SPEED DESIGN" WITH NO SUPERELEVATION, THE APPROXIMATE MAXIMUM SAFE SPEED (NC) IS CALCULATED USING A NEGATIVE NORMAL CROWN (TYPICALLY -2.0 %).
- 3. WHEN THE CURVE IS SUPERELEVATED, THE Lr IS APPLIED IN THE SAME MANNER AS IN URBAN CONDITIONS WITH THE TANGENT RUNOUT (Lt) BEING EQUAL TO THE Lr VALUE. THE TANGENT RUNOUT (Lt) IS ALWAYS ACHIEVED OUTSIDE OF THE SUPERELEVATION RUNOFF (Lr).
- 4. PLEASE NOTE THAT THE RADIUS VALUES LISTED ON PAGE 802.24A HAVE BEEN ROUNDED UP TO THE NEAREST FOOT.

#### EXAMPLES

 $DV = 21 \, mph$ 

e = +2.0 %

f = MAX f ± INTERPOLATED DIFFERENCE BETWEEN LISTED FRICTION FACTORS f = MAX f ± INTERPOLATED DIFFERENCE BETWEEN LISTED FRICTION FACTORS

f = 0.270 - [1/5(0.270 - 0.230)] = 0.262

Rmin = DV  $^{2}/15(e+f)$ 

Rmin. =  $(21)^2/15(0.02 + 0.262) = 104.2553191$  FT.

NC = 37 mph

e = -2.0 %

f = 0.18-[2/5(0.18-0.16)]=0.172

Rmin. = NC 2/15(-e + f)

Rmin. =  $(37)^2/15(-0.02 + 0.172)=600.4385965$  FT.

#### CURVE WIDENING TABLES

#### SU DESIGN VEHICLE

| COMPONENT     | SIZE       |
|---------------|------------|
| OVERALL WIDTH | (u) 8.0 ft |
| WHEELBASE (   | L) 20 ft   |
| FRONT OVERHAN | G (A) 4 ft |

#### LATERAL CLEARANCE

| LANE WIDTH | CLEARANCE (C) |
|------------|---------------|
| 9 ft       | 1.5 ft        |
| 10 ft      | 2 ft          |
| 11 ft      | 2.5 ft        |
| 12 ft      | 3 ft          |
| 16 ft      | 5 ft          |

#### ADJUSTMENT FACTORS

| NUMBER<br>OF<br>LANES<br>ROTATED<br>n <sub>1</sub> | ADJUSTMENT<br>FACTOR<br>(bw) |
|----------------------------------------------------|------------------------------|
| 1                                                  | 1.00                         |
| 1.5                                                | 0.8333                       |
| 2                                                  | 0.75                         |
| 2.5                                                | 0.70                         |
| 3                                                  | 0.6667                       |
| 3.5                                                | 0.6425                       |

#### RELATIVE GRADIENTS

| DESIGN<br>SPEED<br>VD<br>MPH | MAXIMUM<br>RELATIVE<br>GRADIENT<br>(rg) | MIN. TRANSITION LENGTH IN FEET RURAL CONDITIONS WITH PAVEMENT WIDENING AND REVERSE CURVES FOR ALL CONDITIONS  (2 SECOND RULE) |
|------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| 20                           | 0.74                                    | 59                                                                                                                            |
| 25                           | 0.70                                    | 74                                                                                                                            |
| 30                           | 0.66                                    | 88                                                                                                                            |
| 35                           | 0.62                                    | 103                                                                                                                           |
| 40                           | 0.58                                    | 117                                                                                                                           |
| 45                           | 0.54                                    | 132                                                                                                                           |
| 50                           | 0.50                                    | 147                                                                                                                           |
| 55                           | 0.47                                    | 161                                                                                                                           |
| 60                           | 0.45                                    | 176                                                                                                                           |
| 65                           | 0.43                                    | 191                                                                                                                           |
| 70                           | 0.40                                    | 205                                                                                                                           |

### A - FRONT OVERHANG OF DESIGN VEHICLE FROM APPROPRIATE TABLE.

bw - ADJUSTMENT FACTOR FROM TABLE.

 LATERAL CLEARANCE OF DESIGN VEHICLE FROM APPROPRIATE TABLE.

E - SUPERELEVATION RATE FROM APPROPRIATE TABLE.

F<sub>A</sub> - CALCULATED WIDTH OF OVERHANG FOR DESIGN VEHICLE.

L - WHEELBASE OF DESIGN VEHICLE FROM APPROPRIATE TABLE.

Lr - LENGTH OF SUPERELEVATION RUNOFF SECTION.

#### **DEFINITIONS**

Lt - LENGTH OF TANGENT RUNOUT SECTION

M - MULTIPLE LANE FACTOR.

N - NUMBER OF LANES.

 $\rm n_1$ - NUMBER OF LANES ROTATED (FROM TABLES).

Pw - PAVEMENT WIDTH.

R - RADIUS OF CURVE.

rg - RELATIVE GRADIENT FROM APPROPRIATE TABLE.

U - CALCULATED TRACK WIDTH OF DESIGN VEHICLE.

J - TRACK WIDTH OF DESIGN VEHICLE FROM APPROPRIATE TABLE.

 $V_{\mathsf{D}}$  - DESIGN VELOCITY.

w - CALCULATED WIDENING.

W - PAVEMENT WIDTH

W<sub>C</sub> - CALCULATED TOTAL CURVE WIDTH.

Wn - WIDTH OF LANE.

Z - CALCULATED EXTRA WIDTH ALLOWANCE.

#### GENERAL DESIGN CONSIDERATIONS

- WHERE PAVEMENT WIDENING IS REQUIRED, THE APPROPRIATE WIDENING IS ADDED TO THE LANE WIDTH WHEN CALCULATING THE SUPERELEVATION RUNOFF LENGTH (Lr).
- 2. THE COMPUTED SUPERELEVATION RUNOFF LENGTH (Lr) IS ROUNDED UP TO THE NEAREST FOOT.
- 3. WHEN THE SUPERELEVATION RUNOFF LENGTH (Lr) IS CALCULATED, IT MUST BE COMPARED WITH THE MINIMUM VALUE LISTED IN THE APPROPRIATE COLUMN ON THE RELATIVE GRADIENT TABLE.
- 4. TANGENT RUNOUT (Lt) IS ALWAYS ACHIEVED OUTSIDE OF THE SUPERELEVATION RUNOFF SECTION (Lr).
- 5. NO PAVEMENT WIDENING IS REQUIRED FOR URBAN ROADWAYS.
- NO PAVEMENT WIDENING IS REQUIRED FOR RURAL ROADWAYS WITH A CURVE RADIUS GREATER THAN 2865 FEET.

- 7. NO PAVEMENT WIDENING IS REQUIRED FOR RURAL ROADWAYS WITH 12 FOOT WIDE LANES AND A CURVE RADIUS GREATER THAN 881 FEET.
- 8. PAVEMENT WIDENING IS APPLIED ONLY WHEN CALCULATED WIDENING (w) IS EQUAL TO OR GREATER THAN 2 FEET.
- 9. WHEN CALCULATING WIDENING (W) FOR MULTI-LANE RURAL ROADWAYS, WIDENING IS FIRST CALCULATED USING THE SINGLE LANE WIDTH FOR "W".
- 10. AN ALTERNATE METHOD FOR MULTI-LANE UNDIVIDED PAVEMENTS (48'). THE Lr IS 1.5 TIMES (M-1.5) THE CORRESPONDING LENGTH FOR TWO LANE HIGHWAYS; AND FOR SIX LANE UNDIVIDED PAVEMENTS (72'), THE Lr IS TWO TIMES (M-2) THE CORRESPONDING LENGTH FOR TWO LANE HIGHWAYS.
- 11. CALCULATED WIDENING IS ROUNDED UP TO THE NEAREST 0.1 FOOT.
- 12. CURVES WITH SPIRAL CURVE TRANSITIONS MUST HAVE A MINIMUM SUPERELEVATION RUNOFF LENGTH (Lr) EQUAL TO 2 SECONDS OF TRAVEL TIME AT THE ROADWAY'S DESIGN SPEED AS NOTED IN THE RELATIVE GRADIENT TABLE.

NO WIDENING REQUIRED FORMULAS USED TO CALCULATE SUPERELEVATION RUNOFF (Lr) AND WIDENING (W)

 $Lr = b_w(W_n E/rg)$ 

Lr = M(WE/rg) (ALT. MULTI-LANE)

Lr = m[E(W + w/N)/rg] (ALT. MULTI-LANE)

WIDENING REQUIRED

 $Lr = b_w[E n_1(W_n + w/N)/rg]$ 

 $U = u + R - \sqrt{R^2 - L^2}$ 

 $F_A = \sqrt{R^2 + A(2L + A)} - R$ 

 $Z = (V_D / \sqrt{R})$ 

 $W = W_C - 2W_n$ 

 $W_C = N(U + C) + F_A + Z$ 

FOR SOLVED PROBLEMS USING THIS METHODOLOGY, SEE THE EXAMPLES ON PAGE 802.23

METHODOLOGIES FOR CALCULATING TC-5.01 VALUES

REV. 1/07 802.22

# RURAL EXAMPLE 20 FT PAVEMENT WIDTH (DESIGN SOFTWARE - 1 LANE AT 10 FT)

$$U = U + R - \sqrt{R^2 - L^2}$$

$$U = 8.0 + 1000 - \sqrt{(1000)^2 - (20)^2}$$

$$U = 8.20002$$

$$F_A = \sqrt{R^2 + A(2L + A)} - R$$

$$F_A = \sqrt{(1000)^2 + 4E(2(20) + 4]} - 1000$$

$$F_A = .087996$$

$$Z = (V_D / \sqrt{R})$$
  
 $Z = (50 / \sqrt{1000})$   
 $Z = 1.58$ 

$$W_{C} = N (U + C) + F_{A} + Z$$
  
 $W_{C} = 2(8.20002 + 2) + 0.087996 + 1.58$   
 $W_{C} = 22.0680$ 

$$W = W_C - 2W_n = 22.0680 - 2(10) = 2.1$$

(R<2865 & w>2 THEREFORE WIDENING IS REQUIRED)   
 
$$Lr = E n_1 (W_n + w/2) / rg ] b_w$$
  
 $Lr = [7.6(1)(10 + 2.1/2) / 0.50] 1$   
 $Lr = 7.6 (11.05)/0.50$   
 $Lr = 167.96$ 

### RURAL EXAMPLE

72 FT PAVEMENT WIDTH (DESIGN SOFTWARE - 3 LANES AT 12 FT)

$$U = u + R - \sqrt{R^2 - L^2}$$

$$U = 8.0 + 500 - \sqrt{(500)^2 - (20)^2}$$

$$U = 8.4002$$

$$F_{A} = \sqrt{R^{2} + A (2L + A)} - R$$

$$F_{A} = \sqrt{(500)^{2} + 4[2(20) + 4]} - 500$$

$$F_{A} = .1760$$

$$Z = (V_D / \sqrt{R})$$
  
 $Z = (40 / \sqrt{500})$   
 $Z = 1.7885$ 

$$W_C = 2 (U + C) + F_A + Z$$
  
 $W_C = 2(8.4002 + 3.0) + .1760 + 1.7885$   
 $W_C = 24.7651$ 

$$w = W_C - 2W_p = 24.7651 - 2(12) = 0.7651(0.8)$$

FOR 72' PAVEMENT WIDTH 
$$w = 3(0.8) = 2.4$$

$$Lr = [E \ n_1(W_n + w/3)/ \ rg] b_w$$
  
 $Lr = [8 \ (3) \ (12 +2.4/3)/ \ 0.58] \ 0.6667$ 

$$Lr = (307.2/0.58) 0.6667$$
  
 $Lr = 353.1211$ 

Lr = 353.1034

$$Lr = MEE(W_n + w/N)/rg$$
]  
 $Lr = 2 [8(12 + 4.5/3) / 0.58]$   
 $Lr = 2 (102.4/0.58)$ 

#### URBAN EXAMPLES

24 FT PAVEMENT WIDTH (DESIGN SOFTWARE - 1 LANE AT 12 FT)

$$Lr = (W_n n, E/rg) b_w$$
  
 $Lr = [12(1)(4)/0.58] 1.00$   
 $Lr = (48/.058)$   
 $Lr = 82.7586$ 

66 FT PAVEMENT WIDTH (DESIGN SOFTWARE - 3 LANES AT 11 FT)

$$V_D = 40 \text{ MPH}$$
 R = 600 FT  
 $W_n = 11 \text{ FT}$  rg = 0.58  
F = 4.0 (4% PFR PAGE 802.29)

$$\begin{array}{lll} Lr &= b_{\text{w}} \; (W_n \; n_1 \; E/rg) \\ Lr &= 0.6667 \; [11(3)(4)/ \; 0.58] \\ Lr &= 0.6667 \; (132/0.58) \\ Lr &= 151.7317 \end{array}$$

#### MINIMUM RADII AND SUPERELEVATION RUNOFF SECTION (Lr) LENGTHS FOR 2% SUPERELEVATION

|        |     |      |       |                      | Lr (FEET)                                                        |
|--------|-----|------|-------|----------------------|------------------------------------------------------------------|
| RADIUS | E   | F    | DV    |                      | PAVEMENT WIDTH (W)                                               |
| (FEET) | (%) |      | (MPH) | W <u>&lt;</u> 72 FT. | W > 72 FT                                                        |
| >738   | 2.0 | .163 | 45    | 126                  |                                                                  |
| 539    | 2.0 | .178 | 40    | 113                  | NOTE:                                                            |
| 377    | 2.0 | .197 | 35    | 101                  | FOR PAVEMENT WIDTHS GREATER THAN 72 FEET USE LY VALUES DEVELOPED |
| 249    | 2.0 | .221 | 30    | 90                   | BY THE DESIGN SOFTWARE.                                          |
| 154    | 2.0 | .252 | 25    | 80                   |                                                                  |
| 84     | 2.0 | .300 | 20    | 75                   |                                                                  |

# MINIMUM RADIIFOR DESIGNS UTILIZING NORMAL PAVEMENT CROWN

| RADIUS<br>(FEET) | F    | NC<br>(MPH) |
|------------------|------|-------------|
| > 945            | .163 | 45          |
| 676              | .178 | 40          |
| 462              | .197 | 35          |
| 299              | .221 | 30          |
| 180              | .252 | 25          |
| 96               | .300 | 20          |
|                  |      |             |

#### MINIMUM RADII AND SUPERELEVATION RUNOFF SECTION LENGTHS (Lr) FOR +2% SUPERELEVATION

|        |     |       |       | LENG           | GTH OF           | SUPEREL        | EVATION        | RUNOF          | F (Lr) IN      | I FEET  |
|--------|-----|-------|-------|----------------|------------------|----------------|----------------|----------------|----------------|---------|
| RADIUS | E   | f     | DV    |                | РА               | VEMENT         | WIDTH          | (W)            |                |         |
| (FEET) | (%) | '     | (MPH) | 24'<br>(1@12') | 36'<br>(1.5@12') | 48'<br>(2@12') | 60'<br>(3@10') | 66'<br>(3@11') | 72'<br>(3@12') | W > 72' |
| > 795  | 2.0 | 0.150 | 45    | 45             | 56               | 67             | 75             | 82             | 90             | *       |
| 593    | 2.0 | 0.160 | 40    | 42             | 52               | 63             | 70             | 77             | 84             | ×       |
| 408    | 2.0 | 0.180 | 35    | 39             | 49               | 59             | 65             | 72             | 78             | ×       |
| 273    | 2.0 | 0.200 | 30    | 37             | 46               | 55             | 61             | 67             | 74             | ×       |
| 167    | 2.0 | 0.230 | 25    | 35             | 43               | 52             | 58             | 64             | 69             | ×       |
| 92     | 2.0 | 0.270 | 20    | 33             | 41               | 49             | 55             | 60             | 66             | *       |

<sup>\*</sup> FOR PAVEMENT WIDTHS GREATER THAN 72 FEET USE Lr VALUES DEVELOPED BY THE DESIGN SOFTWARE.

MINIMUM RADII FOR DESIGNS

UTILIZING -2% SUPERELEVATION NORMAL PAVEMENT CROWN

| RADIUS<br>(FEET) | f    | NC<br>(MPH) |
|------------------|------|-------------|
| > 1039           | .150 | 45          |
| 762              | .160 | 40          |
| 510              | .180 | 35          |
| 333              | .200 | 30          |
| 198              | .230 | 25          |
| 107              | .270 | 20          |

## DESIGN FACTORS FOR A DESIGN SPEED OF 20 MPH (URBAN) USING E= 4% MAX.

|        |     |     |        | TOITE | 7 (1 1 7 ) | 201146  | <i>,</i> | 1 7 1  | /1/ \/\. |        |        |        |     |
|--------|-----|-----|--------|-------|------------|---------|----------|--------|----------|--------|--------|--------|-----|
|        |     |     |        |       | PAVE       | MENT V  | VIDTH    |        |          |        |        |        |     |
| RADIUS | E   | 24  | FT     | 36    | FT         | 48      | FT       | 60     | FT       | 66     | FT     | 72     | FT  |
| (FEET) | (%) |     | DESIGN | SOFTV | VARE E     | QUIVALE | ENTS (N  | IUMBER | OF LAN   | IES AT | LANE \ | WIDTH) |     |
|        |     | 1 @ | 12'    | 1.5 @ | ⊉ 12'      | 2 @     | 12'      | 3 @    | 10'      | 3 C    | 11'    | 3 @    | 12' |
|        |     | Lt  | Lr     | Lt    | Lr         | Lt      | Lr       | Lt     | Lr       | Lt     | Lr     | Lt     | Lr  |
| 1400   | NC  | 0   | 0      | 0     | 0          | 0       | 0        | 0      | 0        | 0      | 0      | 0      | 0   |
| 961    | 2.0 | 33  | 33     | 41    | 41         | 49      | 49       | 55     | 55       | 60     | 60     | 65     | 65  |
| 884    | 2.1 | 33  | 35     | 41    | 43         | 49      | 52       | 55     | 57       | 60     | 63     | 65     | 69  |
| 810    | 2.2 | 33  | 36     | 41    | 45         | 49      | 54       | 55     | 60       | 60     | 66     | 65     | 72  |
| 735    | 2.3 | 33  | 38     | 41    | 47         | 49      | 56       | 55     | 63       | 60     | 69     | 65     | 75  |
| 653    | 2.4 | 33  | 39     | 41    | 49         | 49      | 59       | 55     | 65       | 60     | 72     | 65     | 78  |
| 578    | 2.5 | 33  | 41     | 41    | 51         | 49      | 61       | 55     | 68       | 60     | 75     | 65     | 82  |
| 516    | 2.6 | 33  | 43     | 41    | 53         | 49      | 64       | 55     | 71       | 60     | 78     | 65     | 85  |
| 464    | 2.7 | 33  | 44     | 41    | 55         | 49      | 66       | 55     | 73       | 60     | 81     | 65     | 88  |
| 421    | 2.8 | 33  | 46     | 41    | 57         | 49      | 69       | 55     | 76       | 60     | 84     | 65     | 91  |
| 383    | 2.9 | 33  | 48     | 41    | 59         | 49      | 71       | 55     | 79       | 60     | 87     | 65     | 95  |
| 351    | 3.0 | 33  | 49     | 41    | 61         | 49      | 73       | 55     | 82       | 60     | 90     | 65     | 98  |
| 322    | 3.1 | 33  | 51     | 41    | 63         | 49      | 76       | 55     | 84       | 60     | 93     | 65     | 101 |
| 296    | 3.2 | 33  | 52     | 41    | 65         | 49      | 78       | 55     | 87       | 60     | 96     | 65     | 104 |
| 273    | 3.3 | 33  | 54     | 41    | 67         | 49      | 81       | 55     | 90       | 60     | 99     | 65     | 108 |
| 252    | 3.4 | 33  | 56     | 41    | 69         | 49      | 83       | 55     | 92       | 60     | 102    | 65     | 111 |
| 232    | 3.5 | 33  | 57     | 41    | 71         | 49      | 86       | 55     | 95       | 60     | 105    | 65     | 114 |
| 214    | 3.6 | 33  | 59     | 41    | 73         | 49      | 88       | 55     | 98       | 60     | 108    | 65     | 117 |
| 196    | 3.7 | 33  | 60     | 41    | 75         | 49      | 90       | 55     | 100      | 60     | 110    | 65     | 120 |
| 179    | 3.8 | 33  | 62     | 41    | 77         | 49      | 93       | 55     | 103      | 60     | 113    | 65     | 124 |
| 160    | 3.9 | 33  | 64     | 41    | 79         | 49      | 95       | 55     | 106      | 60     | 116    | 65     | 127 |
| 127    | 4.0 | 33  | 65     | 41    | 81         | 49      | 98       | 55     | 109      | 60     | 119    | 65     | 130 |
|        | -   | -   | -      |       | •          |         |          |        |          | •      | -      |        | -   |

#### NOTE:

Lt AND Lr VALUES IN FEET.

FOR PAVEMENT WIDTHS GREATER THAN 72 FEET USE Lr VALUES DEVELOPED BY THE DESIGN SOFTWARE.

LISTED RADIUS IS THE MINIMUM ALLOWABLE RADIUS FOR THE CORRESPONDING E, Lt, AND Lr VALUES.

SPECIFICATION REFERENCE TRANSITION CURVES - URBAN 20 MPH DESIGN SPEED

VIRGINIA DEPARTMENT OF TRANSPORTATION

| TC-5.01 DESIGN FACTORS FOR A DESIGN SPEED OF 25 MPH (URBAN) USING F= 4% MAX. |     |    |         |        |        |         |        |        |         |        |        |      |     |
|------------------------------------------------------------------------------|-----|----|---------|--------|--------|---------|--------|--------|---------|--------|--------|------|-----|
|                                                                              |     |    |         |        |        |         |        |        |         |        |        |      |     |
|                                                                              |     |    |         |        | PAVE   | MENT W  | /IDTH  |        |         |        |        |      |     |
| RADIUS                                                                       | E   | 24 | FT      | 36     | FT     | 48      | FT     | 60     | FT      | 66     | FT     | 72   | FT  |
| (FEET)                                                                       | (%) | DE | ESIGN S | SOFTWA | RE EQL | JIVALEN | TS (NU | MBER O | F LANE: | S AT L | ANE WI | DTH) |     |
|                                                                              |     | 1@ | 12'     | 1.5 @  | 12'    | 2 @     | 12'    | 3 @    | 10'     | 3 ❷    | 11'    | 3 @  | 12' |
|                                                                              |     | Lt | Lr      | Lt     | Lr     | Lt      | Lr     | Lt     | Lr      | Lt     | Lr     | Lt   | Lr  |
| 2500                                                                         | NC  | 0  | 0       | 0      | 0      | 0       | 0      | 0      | 0       | 0      | 0      | 0    | 0   |
| 1407                                                                         | 2.0 | 35 | 35      | 43     | 43     | 52      | 52     | 58     | 58      | 63     | 63     | 69   | 69  |
| 1299                                                                         | 2.1 | 35 | 36      | 43     | 45     | 52      | 54     | 58     | 60      | 63     | 66     | 69   | 72  |
| 1195                                                                         | 2.2 | 35 | 38      | 43     | 48     | 52      | 57     | 58     | 63      | 63     | 70     | 69   | 76  |
| 1094                                                                         | 2.3 | 35 | 40      | 43     | 50     | 52      | 60     | 58     | 66      | 63     | 73     | 69   | 79  |
| 990                                                                          | 2.4 | 35 | 42      | 43     | 52     | 52      | 62     | 58     | 69      | 63     | 76     | 69   | 83  |
| 883                                                                          | 2.5 | 35 | 43      | 43     | 54     | 52      | 65     | 58     | 72      | 63     | 79     | 69   | 86  |
| 793                                                                          | 2.6 | 35 | 45      | 43     | 56     | 52      | 67     | 58     | 75      | 63     | 82     | 69   | 90  |
| 718                                                                          | 2.7 | 35 | 47      | 43     | 58     | 52      | 70     | 58     | 78      | 63     | 85     | 69   | 93  |
| 654                                                                          | 2.8 | 35 | 48      | 43     | 60     | 52      | 72     | 58     | 80      | 63     | 88     | 69   | 96  |
| 598                                                                          | 2.9 | 35 | 50      | 43     | 63     | 52      | 75     | 58     | 83      | 63     | 92     | 69   | 100 |
| 548                                                                          | 3.0 | 35 | 52      | 43     | 65     | 52      | 78     | 58     | 86      | 63     | 95     | 69   | 103 |
| 505                                                                          | 3.1 | 35 | 54      | 43     | 67     | 52      | 80     | 58     | 89      | 63     | 98     | 69   | 107 |
| 466                                                                          | 3.2 | 35 | 55      | 43     | 69     | 52      | 83     | 58     | 92      | 63     | 101    | 69   | 110 |
| 430                                                                          | 3.3 | 35 | 57      | 43     | 71     | 52      | 85     | 58     | 95      | 63     | 104    | 69   | 114 |
| 397                                                                          | 3.4 | 35 | 59      | 43     | 73     | 52      | 88     | 58     | 98      | 63     | 107    | 69   | 117 |
| 367                                                                          | 3.5 | 35 | 60      | 43     | 75     | 52      | 90     | 58     | 100     | 63     | 110    | 69   | 120 |
| 339                                                                          | 3.6 | 35 | 62      | 43     | 78     | 52      | 93     | 58     | 103     | 63     | 114    | 69   | 124 |
| 311                                                                          | 3.7 | 35 | 64      | 43     | 80     | 52      | 96     | 58     | 106     | 63     | 117    | 69   | 127 |
| 284                                                                          | 3.8 | 35 | 66      | 43     | 82     | 52      | 98     | 58     | 109     | 63     | 120    | 69   | 131 |
| 255                                                                          | 3.9 | 35 | 67      | 43     | 84     | 52      | 101    | 58     | 112     | 63     | 123    | 69   | 134 |
| 204                                                                          | 4.0 | 35 | 69      | 43     | 86     | 52      | 103    | 58     | 115     | 63     | 126    | 69   | 138 |

NOTE:

Lt AND Lr VALUES IN FEET.

FOR PAVEMENT WIDTHS GREATER THAN 72 FEET USE Lr VALUES DEVELOPED BY THE DESIGN SOFTWARE.

LISTED RADIUS IS THE MINIMUM ALLOWABLE RADIUS FOR THE CORRESPONDING E, Lt, AND Lr VALUES.

## DESIGN FACTORS FOR A DESIGN SPEED OF 30 MPH (URBAN) USING E= 4% MAX.

|        |     |    |       | TOND  | / \  \  / \ | 001110  | <i>/</i> _ | 17. 1   | VI/ \/\• |         |        |       |     |
|--------|-----|----|-------|-------|-------------|---------|------------|---------|----------|---------|--------|-------|-----|
|        |     |    |       |       | PAVE        | MENT V  | VIDTH      |         |          |         |        |       |     |
| RADIUS | E   | 24 | FT    | 36    | FT          | 48      | FT         | 60      | FT       | 66      | FT     | 72    | FT  |
| (FEET) | (%) |    | ESIGN | SOFTW | ARE EQ      | UIVALEN | NTS (NL    | JMBER ( | OF LANE  | ES AT I | _ANE W | IDTH) |     |
|        |     | 1@ | 12'   | 1.5 @ | 2 12'       | 2 @     | 12'        | 3 @     | 10'      | 3 ₪     | 11'    | 3 @   | 12' |
|        |     | Lt | Lr    | Lt    | Lr          | Lt      | Lr         | Lt      | Lr       | Lt      | Lr     | Lt    | Lr  |
| 3000   | NC  | 0  | 0     | 0     | 0           | 0       | 0          | 0       | 0        | 0       | 0      | 0     | 0   |
| 1940   | 2.0 | 37 | 37    | 46    | 46          | 55      | 55         | 61      | 61       | 67      | 67     | 73    | 73  |
| 1795   | 2.1 | 37 | 39    | 46    | 48          | 55      | 58         | 61      | 64       | 67      | 70     | 73    | 77  |
| 1658   | 2.2 | 37 | 40    | 46    | 50          | 55      | 60         | 61      | 67       | 67      | 74     | 73    | 80  |
| 1525   | 2.3 | 37 | 42    | 46    | 53          | 55      | 63         | 61      | 70       | 67      | 77     | 73    | 84  |
| 1393   | 2.4 | 37 | 44    | 46    | 55          | 55      | 66         | 61      | 73       | 67      | 80     | 73    | 88  |
| 1255   | 2.5 | 37 | 46    | 46    | 57          | 55      | 69         | 61      | 76       | 67      | 84     | 73    | 91  |
| 1134   | 2.6 | 37 | 48    | 46    | 60          | 55      | 71         | 61      | 79       | 67      | 87     | 73    | 95  |
| 1030   | 2.7 | 37 | 50    | 46    | 62          | 55      | 74         | 61      | 82       | 67      | 90     | 73    | 99  |
| 941    | 2.8 | 37 | 51    | 46    | 64          | 55      | 77         | 61      | 85       | 67      | 94     | 73    | 102 |
| 863    | 2.9 | 37 | 53    | 46    | 66          | 55      | 80         | 61      | 88       | 67      | 97     | 73    | 106 |
| 794    | 3.0 | 37 | 55    | 46    | 69          | 55      | 82         | 61      | 91       | 67      | 100    | 73    | 110 |
| 732    | 3.1 | 37 | 57    | 46    | 71          | 55      | 85         | 61      | 94       | 67      | 104    | 73    | 113 |
| 677    | 3.2 | 37 | 59    | 46    | 73          | 55      | 88         | 61      | 97       | 67      | 107    | 73    | 117 |
| 627    | 3.3 | 37 | 60    | 46    | 75          | 55      | 90         | 61      | 100      | 67      | 110    | 73    | 120 |
| 580    | 3.4 | 37 | 62    | 46    | 78          | 55      | 93         | 61      | 104      | 67      | 114    | 73    | 124 |
| 537    | 3.5 | 37 | 64    | 46    | 80          | 55      | 96         | 61      | 107      | 67      | 117    | 73    | 128 |
| 496    | 3.6 | 37 | 66    | 46    | 82          | 55      | 99         | 61      | 110      | 67      | 120    | 73    | 131 |
| 457    | 3.7 | 37 | 68    | 46    | 85          | 55      | 101        | 61      | 113      | 67      | 124    | 73    | 135 |
| 417    | 3.8 | 37 | 70    | 46    | 87          | 55      | 104        | 61      | 116      | 67      | 127    | 73    | 139 |
| 375    | 3.9 | 37 | 71    | 46    | 89          | 55      | 107        | 61      | 119      | 67      | 130    | 73    | 142 |
| 300    | 4.0 | 37 | 73    | 46    | 91          | 55      | 110        | 61      | 122      | 67      | 134    | 73    | 146 |
|        | •   | •  | •     | •     | •           | •       | •          | •       | •        | •       | •      | •     | •   |

#### NOTE:

Lt AND Lr VALUES IN FEET.

FOR PAVEMENT WIDTHS GREATER THAN 72 FEET USE Lr VALUES DEVELOPED BY THE DESIGN SOFTWARE.

LISTED RADIUS IS THE MINIMUM ALLOWABLE RADIUS FOR THE CORRESPONDING E, Lt, AND Lr VALUES.

TRANSITION CURVES - URBAN 30 MPH DESIGN SPEED

| TC-5.01 | DESI | GN F | ACT   | ORS<br>(URB |        |         |         |         | EED (   | OF 3   | 5 MF  | PH   |     |
|---------|------|------|-------|-------------|--------|---------|---------|---------|---------|--------|-------|------|-----|
|         |      |      |       | UKB         |        |         |         | 4/, 1   | MAX.    |        |       |      |     |
|         |      |      |       |             | PAVEI  | MENT W  | /IDTH   |         |         |        |       |      |     |
| RADIUS  | E    | 24   | FT    | 36          | FT     | 48      | FT      | 60      | FT      | 66     | FT    | 72   | FT  |
| (FEET)  | (%)  | D    | ESIGN | SOFTWA      | ARE EQ | UIVALEN | ITS (NL | IMBER ( | OF LANE | S AT L | ANE W | DTH) |     |
|         |      | 1 @  | 12'   | 1.5 @       | 12'    | 2 @     | 12'     | 3 @     | 10'     | 3 ⊚    | 11'   | 3 @  | 12' |
|         |      | Lt   | Lr    | Lt          | Lr     | Lt      | Lr      | Lt      | Lr      | Lt     | Lr    | CR   | Lr  |
| 4000    | NC   | 0    | 0     | 0           | 0      | 0       | 0       | 0       | 0       | 0      | 0     | 0    | 0   |
| 2561    | 2.0  | 39   | 39    | 49          | 49     | 59      | 59      | 65      | 65      | 71     | 71    | 78   | 78  |
| 2374    | 2.1  | 39   | 41    | 49          | 51     | 59      | 61      | 65      | 68      | 71     | 75    | 78   | 82  |
| 2199    |      |      | 49    | 54          | 59     | 64      | 65      | 71      | 71      | 79     | 78    | 86   |     |
| 2031    | 2.3  | 39   | 45    | 49          | 56     | 59      | 67      | 65      | 75      | 71     | 82    | 78   | 90  |
| 1866    | 2.4  | 39   | 47    | 49          | 59     | 59      | 70      | 65      | 78      | 71     | 86    | 78   | 93  |
| 1697    | 2.5  | 39   | 49    | 49          | 61     | 59      | 73      | 65      | 81      | 71     | 89    | 78   | 97  |
| 1538    | 2.6  | 39   | 51    | 49          | 63     | 59      | 76      | 65      | 84      | 71     | 93    | 78   | 101 |
| 1403    | 2.7  | 39   | 53    | 49          | 66     | 59      | 79      | 65      | 88      | 71     | 96    | 78   | 105 |
| 1285    | 2.8  | 39   | 55    | 49          | 68     | 59      | 82      | 65      | 91      | 71     | 100   | 78   | 109 |
| 1182    | 2.9  | 39   | 57    | 49          | 71     | 59      | 85      | 65      | 94      | 71     | 103   | 78   | 113 |
| 1090    | 3.0  | 39   | 59    | 49          | 73     | 59      | 88      | 65      | 97      | 71     | 107   | 78   | 117 |
| 1008    | 3.1  | 39   | 60    | 49          | 75     | 59      | 90      | 65      | 100     | 71     | 110   | 78   | 120 |
| 933     | 3.2  | 39   | 62    | 49          | 78     | 59      | 93      | 65      | 104     | 71     | 114   | 78   | 124 |
| 865     | 3.3  | 39   | 64    | 49          | 80     | 59      | 96      | 65      | 107     | 71     | 118   | 78   | 128 |
| 802     | 3.4  | 39   | 66    | 49          | 83     | 59      | 99      | 65      | 110     | 71     | 121   | 78   | 132 |
| 743     | 3.5  | 39   | 68    | 49          | 85     | 59      | 102     | 65      | 113     | 71     | 125   | 78   | 136 |
| 688     | 3.6  | 39   | 70    | 49          | 88     | 59      | 105     | 65      | 117     | 71     | 128   | 78   | 140 |
| 634     | 3.7  | 39   | 72    | 49          | 90     | 59      | 108     | 65      | 120     | 71     | 132   | 78   | 144 |
| 580     | 3.8  | 39   | 74    | 49          | 92     | 59      | 111     | 65      | 123     | 71     | 135   | 78   | 148 |
| 522     | 3.9  | 39   | 76    | 49          | 95     | 59      | 114     | 65      | 126     | 71     | 139   | 78   | 151 |
| 420     | 4.0  | 39   | 78    | 49          | 97     | 59      | 117     | 65      | 130     | 71     | 142   | 78   | 155 |

NOTE:

Lt AND Lr VALUES IN FEET.

FOR PAVEMENT WIDTHS GREATER THAN 72 FEET USE Lr VALUES DEVELOPED BY THE DESIGN SOFTWARE.

LISTED RADIUS IS THE MINIMUM ALLOWABLE RADIUS FOR THE CORRESPONDING E, Lt, AND Lr VALUES.

TRANSITION CURVES - URBAN 35 MPH DESIGN SPEED

SPECIFICATION REFERENCE

REV. 1/07 802.28

## DESIGN FACTORS FOR A DESIGN SPEED OF 40 MPH (URBAN) USING E= 4% MAX.

|        |     |      |        | TOND  | AIV) ( | 731110 |       | +/· I | ///// |        |         |     |     |
|--------|-----|------|--------|-------|--------|--------|-------|-------|-------|--------|---------|-----|-----|
|        |     |      |        |       | PAVE   | MENT V | VIDTH |       |       |        |         |     |     |
| RADIUS | E   | 24   | FT     | 36    | FT     | 48     | FT    | 60    | FT    | 66     | FT      | 72  | FT  |
| (FEET) | (%) | DESI | GN SOF | TWARE | EQUIV/ | ALENTS | (NUMB | ER OF | LANES | AT LAN | E WIDTH | 1)  |     |
|        |     | 1 @  | 12'    | 1.5 @ | 12'    | 2 @    | 12'   | 3 @   | 10'   | 3 ⊚    | 11'     | 3 @ | 12' |
|        |     | Lt   | Lr     | Lt    | Lr     | Lt     | Lr    | Lt    | Lr    | Lt     | Lr      | Lt  | Lr  |
| 5000   | NC  | 0    | 0      | 0     | 0      | 0      | 0     | 0     | 0     | 0      | 0       | 0   | 0   |
| 3273   | 2.0 | 42   | 42     | 52    | 52     | 63     | 63    | 69    | 69    | 76     | 76      | 83  | 83  |
| 3039   | 2.1 | 42   | 44     | 52    | 55     | 63     | 66    | 69    | 73    | 76     | 80      | 83  | 87  |
| 2820   | 2.2 | 42   | 46     | 52    | 57     | 63     | 69    | 69    | 76    | 76     | 84      | 83  | 92  |
| 2612   | 2.3 | 42   | 48     | 52    | 60     | 63     | 72    | 69    | 80    | 76     | 88      | 83  | 96  |
| 2411   | 2.4 | 42   | 50     | 52    | 63     | 63     | 75    | 69    | 83    | 76     | 92      | 83  | 100 |
| 2209   | 2.5 | 42   | 52     | 52    | 65     | 63     | 78    | 69    | 87    | 76     | 95      | 83  | 104 |
| 2010   | 2.6 | 42   | 54     | 52    | 68     | 63     | 81    | 69    | 90    | 76     | 99      | 83  | 108 |
| 1839   | 2.7 | 42   | 56     | 52    | 70     | 63     | 84    | 69    | 94    | 76     | 103     | 83  | 112 |
| 1689   | 2.8 | 42   | 58     | 52    | 73     | 63     | 87    | 69    | 97    | 76     | 107     | 83  | 116 |
| 1557   | 2.9 | 42   | 60     | 52    | 75     | 63     | 90    | 69    | 100   | 76     | 110     | 83  | 120 |
| 1439   | 3.0 | 42   | 63     | 52    | 78     | 63     | 94    | 69    | 104   | 76     | 114     | 83  | 125 |
| 1332   | 3.1 | 42   | 65     | 52    | 81     | 63     | 97    | 69    | 107   | 76     | 118     | 83  | 129 |
| 1236   | 3.2 | 42   | 67     | 52    | 83     | 63     | 100   | 69    | 111   | 76     | 122     | 83  | 133 |
| 1148   | 3.3 | 42   | 69     | 52    | 86     | 63     | 103   | 69    | 114   | 76     | 126     | 83  | 137 |
| 1066   | 3.4 | 42   | 71     | 52    | 88     | 63     | 106   | 69    | 118   | 76     | 129     | 83  | 141 |
| 989    | 3.5 | 42   | 73     | 52    | 91     | 63     | 109   | 69    | 121   | 76     | 133     | 83  | 145 |
| 916    | 3.6 | 42   | 75     | 52    | 94     | 63     | 112   | 69    | 125   | 76     | 137     | 83  | 149 |
| 845    | 3.7 | 42   | 77     | 52    | 96     | 63     | 115   | 69    | 128   | 76     | 141     | 83  | 154 |
| 774    | 3.8 | 42   | 79     | 52    | 99     | 63     | 118   | 69    | 132   | 76     | 145     | 83  | 158 |
| 698    | 3.9 | 42   | 81     | 52    | 101    | 63     | 122   | 69    | 135   | 76     | 148     | 83  | 162 |
| 563    | 4.0 | 42   | 83     | 52    | 104    | 63     | 125   | 69    | 138   | 76     | 152     | 83  | 166 |

#### NOTE:

Lt AND Lr VALUES IN FEET.

FOR PAVEMENT WIDTHS GREATER THAN 72 FEET USE Lr VALUES DEVELOPED BY THE DESIGN SOFTWARE.

LISTED RADIUS IS THE MINIMUM ALLOWABLE RADIUS FOR THE CORRESPONDING E, Lt, AND Lr VALUES.

TC-5.01

# DESIGN FACTORS FOR A DESIGN SPEED OF 45 MPH (URBAN) USING E= 4% MAX.

|        |     |    | PAVEMENT WIDTH 24 FT   36 FT   48 FT   60 FT   66 FT   72 FT |        |        |         |          |         |        |       |        |         |     |
|--------|-----|----|--------------------------------------------------------------|--------|--------|---------|----------|---------|--------|-------|--------|---------|-----|
| RADIUS | E   | 24 | - T                                                          | 36 F   | Т      | 48 F    | Т        | 60 F    | Т      | 66 F  | Т      | 72 F    | Т   |
| (FEET) | (%) |    |                                                              | DESIGN | SOFTWA | ARE EQU | JIVALENT | S (NUMI | BER OF | LANES | AT LAN | E WIDTH | 1)  |
|        |     | 1@ | 12'                                                          | 1.5 @  | ⊉ 12'  | 2 @     | ! 12'    | 3 @     | 10'    | 3 @   | 11'    | 3 ⊚     | 12' |
|        |     | Lt | Lr                                                           | Lt     | Lr     | Lt      | Lr       | Lt      | Lr     | Lt    | Lr     | Lt      | Lr  |
| 6000   | NC  | 0  | 0                                                            | 0      | 0      | 0       | 0        | 0       | 0      | 0     | 0      | 0       | 0   |
| 4076   | 2.0 | 45 | 45                                                           | 56     | 56     | 67      | 67       | 75      | 75     | 82    | 82     | 89      | 89  |
| 3790   | 2.1 | 45 | 47                                                           | 56     | 59     | 67      | 70       | 75      | 78     | 82    | 86     | 89      | 94  |
| 3523   | 2.2 | 45 | 49                                                           | 56     | 62     | 67      | 74       | 75      | 82     | 82    | 90     | 89      | 98  |
| 3271   | 2.3 | 45 | 52                                                           | 56     | 64     | 67      | 77       | 75      | 86     | 82    | 94     | 89      | 103 |
| 3029   | 2.4 | 45 | 54                                                           | 56     | 67     | 67      | 80       | 75      | 89     | 82    | 98     | 89      | 107 |
| 2790   | 2.5 | 45 | 56                                                           | 56     | 70     | 67      | 84       | 75      | 93     | 82    | 102    | 89      | 112 |
| 2552   | 2.6 | 45 | 58                                                           | 56     | 73     | 67      | 87       | 75      | 97     | 82    | 106    | 89      | 116 |
| 2341   | 2.7 | 45 | 60                                                           | 56     | 75     | 67      | 90       | 75      | 100    | 82    | 110    | 89      | 120 |
| 2155   | 2.8 | 45 | 63                                                           | 56     | 78     | 67      | 94       | 75      | 104    | 82    | 115    | 89      | 125 |
| 1990   | 2.9 | 45 | 65                                                           | 56     | 81     | 67      | 97       | 75      | 108    | 82    | 119    | 89      | 129 |
| 1843   | 3.0 | 45 | 67                                                           | 56     | 84     | 67      | 100      | 75      | 112    | 82    | 123    | 89      | 134 |
| 1710   | 3.1 | 45 | 69                                                           | 56     | 87     | 67      | 104      | 75      | 115    | 82    | 127    | 89      | 138 |
| 1589   | 3.2 | 45 | 72                                                           | 56     | 89     | 67      | 107      | 75      | 119    | 82    | 131    | 89      | 143 |
| 1477   | 3.3 | 45 | 74                                                           | 56     | 92     | 67      | 110      | 75      | 123    | 82    | 135    | 89      | 147 |
| 1374   | 3.4 | 45 | 76                                                           | 56     | 95     | 67      | 114      | 75      | 126    | 82    | 139    | 89      | 152 |
| 1276   | 3.5 | 45 | 78                                                           | 56     | 98     | 67      | 117      | 75      | 130    | 82    | 143    | 89      | 156 |
| 1184   | 3.6 | 45 | 80                                                           | 56     | 100    | 67      | 120      | 75      | 134    | 82    | 147    | 89      | 160 |
| 1093   | 3.7 | 45 | 83                                                           | 56     | 103    | 67      | 124      | 75      | 138    | 82    | 151    | 89      | 165 |
| 1003   | 3.8 | 45 | 85                                                           | 56     | 106    | 67      | 127      | 75      | 141    | 82    | 155    | 89      | 169 |
| 905    | 3.9 | 45 | 87                                                           | 56     | 109    | 67      | 130      | 75      | 145    | 82    | 159    | 89      | 174 |
| 730    | 4.0 | 45 | 89                                                           | 56     | 112    | 67      | 134      | 75      | 149    | 82    | 163    | 89      | 178 |

NOTE:

Lt AND Lr VALUES IN FEET.

FOR PAVEMENT WIDTHS GREATER THAN 72 FEET USE Lr VALUES DEVELOPED BY THE DESIGN SOFTWARE.

LISTED RADIUS IS THE MINIMUM ALLOWABLE RADIUS FOR THE CORRESPONDING E, Lt, AND Lr VALUES.

TRANSITION CURVES - URBAN 45 MPH DESIGN SPEED

# DESIGN FACTORS FOR A DESIGN SPEED OF 50 MPH (URBAN) USING E= 4 % MAX.

|        |     |    |      |       |        |        | PAVE   | MENT  | WIDTH |       |        |      |                |
|--------|-----|----|------|-------|--------|--------|--------|-------|-------|-------|--------|------|----------------|
| RADIUS | E   | 24 | FT   | 36    | FT     | 48     | FT     | 60    | FT    | 66    | FT     | 72   | FT             |
| (FEET) | (%) | DE | SIGN | SOFTW | ARE EC | UIVALE | NTS (N | UMBER | OF LA | NES A | T LANE | WIDT | <del> </del> ) |
|        |     | 1@ | 12'  | 1.5 @ | ⊉ 12'  | 2 @    | 12'    | 3 @   | 10'   | 3 @   | 2 11'  | 3 @  | 12'            |
|        |     | Lt | Lr   | Lt    | Lr     | Lt     | Lr     | Lt    | Lr    | Lt    | Lr     | Lt   | Lr             |
| 8000   | NC  | 0  | 0    | 0     | 0      | 0      | 0      | 0     | 0     | 0     | 0      | 0    | 0              |
| 4792   | 2.0 | 48 | 48   | 60    | 60     | 72     | 72     | 80    | 80    | 88    | 88     | 96   | 96             |
| 4629   | 2.1 | 48 | 51   | 60    | 63     | 72     | 76     | 80    | 84    | 88    | 93     | 96   | 101            |
| 4310   | 2.2 | 48 | 53   | 60    | 66     | 72     | 80     | 80    | 88    | 88    | 97     | 96   | 106            |
| 4010   | 2.3 | 48 | 56   | 60    | 69     | 72     | 83     | 80    | 92    | 88    | 102    | 96   | 111            |
| 3723   | 2.4 | 48 | 58   | 60    | 72     | 72     | 87     | 80    | 96    | 88    | 106    | 96   | 116            |
| 3444   | 2.5 | 48 | 60   | 60    | 75     | 72     | 90     | 80    | 100   | 88    | 110    | 96   | 120            |
| 3166   | 2.6 | 48 | 63   | 60    | 78     | 72     | 94     | 80    | 104   | 88    | 115    | 96   | 125            |
| 2911   | 2.7 | 48 | 65   | 60    | 81     | 72     | 98     | 80    | 108   | 88    | 119    | 96   | 130            |
| 2686   | 2.8 | 48 | 68   | 60    | 84     | 72     | 101    | 80    | 112   | 88    | 124    | 96   | 135            |
| 2486   | 2.9 | 48 | 70   | 60    | 87     | 72     | 105    | 80    | 116   | 88    | 128    | 96   | 140            |
| 2306   | 3.0 | 48 | 72   | 60    | 90     | 72     | 108    | 80    | 120   | 88    | 132    | 96   | 144            |
| 2143   | 3.1 | 48 | 75   | 60    | 93     | 72     | 112    | 80    | 124   | 88    | 137    | 96   | 149            |
| 1994   | 3.2 | 48 | 77   | 60    | 96     | 72     | 116    | 80    | 128   | 88    | 141    | 96   | 154            |
| 1857   | 3.3 | 48 | 80   | 60    | 99     | 72     | 119    | 80    | 132   | 88    | 146    | 96   | 159            |
| 1729   | 3.4 | 48 | 82   | 60    | 102    | 72     | 123    | 80    | 136   | 88    | 150    | 96   | 164            |
| 1608   | 3.5 | 48 | 84   | 60    | 105    | 72     | 126    | 80    | 140   | 88    | 154    | 96   | 168            |
| 1493   | 3.6 | 48 | 87   | 60    | 108    | 72     | 130    | 80    | 14 4  | 88    | 159    | 96   | 173            |
| 1381   | 3.7 | 48 | 89   | 60    | 111    | 72     | 134    | 80    | 148   | 88    | 163    | 96   | 178            |
| 1268   | 3.8 | 48 | 92   | 60    | 114    | 72     | 137    | 80    | 152   | 88    | 168    | 96   | 183            |
| 1146   | 3.9 | 48 | 94   | 60    | 117    | 72     | 141    | 80    | 156   | 88    | 172    | 96   | 188            |
| 929    | 4.0 | 48 | 96   | 60    | 120    | 72     | 144    | 80    | 160   | 88    | 176    | 96   | 192            |

NOTE:

Lt AND Lr VALUES IN FEET.

FOR PAVEMENT WIDTHS GREATER THAN 72 FEET USE Lr VALUES DEVELOPED BY THE DESIGN SOFTWARE.

LISTED RADIUS IS THE MINIMUM ALLOWABLE RADIUS FOR THE CORRESPONDING E, Lt AND Lr VALUES.

TC-5.01

## DESIGN FACTORS FOR A DESIGN SPEED OF 55 MPH (URBAN) USING E= 4% MAX.

|        |     |    | PAVEMENT WIDTH  4 FT |         |        |        |         |        |       |        |        |        |     |  |
|--------|-----|----|----------------------|---------|--------|--------|---------|--------|-------|--------|--------|--------|-----|--|
| RADIUS | E   | 24 | FT                   | 36 F    | Т      | 48 F   | Т       | 60 F   | Т     | 66 F   | Т      | 72 F   | Т   |  |
| (FEET) | (%) |    | DE                   | SIGN SO | FTWARE | EQUIVA | LENTS ( | NUMBER | OF LA | NES AT | LANE W | /IDTH) |     |  |
|        |     | 1@ | 12'                  | 1.5 @   | ⊉ 12'  | 2 @    | ! 12'   | 3 @    | 10'   | 3 €    | 11'    | 3 @    | 12' |  |
|        |     | Lt | Lr                   | Lt      | Lr     | Lt     | Lr      | Lt     | Lr    | Lt     | Lr     | Lt     | Lr  |  |
| 10000  | NC  | 0  | 0                    | 0       | 0      | 0      | 0       | 0      | 0     | 0      | 0      | 0      | 0   |  |
| 5995   | 2.0 | 52 | 52                   | 64      | 64     | 77     | 77      | 86     | 86    | 94     | 94     | 103    | 103 |  |
| 5592   | 2.1 | 52 | 54                   | 64      | 68     | 77     | 81      | 86     | 90    | 94     | 99     | 103    | 108 |  |
| 5218   | 2.2 | 52 | 57                   | 64      | 71     | 77     | 85      | 86     | 94    | 94     | 103    | 103    | 113 |  |
| 4869   | 2.3 | 52 | 59                   | 64      | 74     | 77     | 89      | 86     | 98    | 94     | 108    | 103    | 118 |  |
| 4538   | 2.4 | 52 | 62                   | 64      | 77     | 77     | 92      | 86     | 103   | 94     | 113    | 103    | 123 |  |
| 4220   | 2.5 | 52 | 64                   | 64      | 80     | 77     | 96      | 86     | 107   | 94     | 118    | 103    | 128 |  |
| 3909   | 2.6 | 52 | 67                   | 64      | 83     | 77     | 100     | 86     | 111   | 94     | 122    | 103    | 133 |  |
| 3610   | 2.7 | 52 | 69                   | 64      | 87     | 77     | 104     | 86     | 115   | 94     | 127    | 103    | 138 |  |
| 3343   | 2.8 | 52 | 72                   | 64      | 90     | 77     | 108     | 86     | 120   | 94     | 132    | 103    | 143 |  |
| 3104   | 2.9 | 52 | 75                   | 64      | 93     | 77     | 112     | 86     | 124   | 94     | 136    | 103    | 149 |  |
| 2888   | 3.0 | 52 | 77                   | 64      | 96     | 77     | 115     | 86     | 128   | 94     | 141    | 103    | 154 |  |
| 2691   | 3.1 | 52 | 80                   | 64      | 99     | 77     | 119     | 86     | 132   | 94     | 146    | 103    | 159 |  |
| 2510   | 3.2 | 52 | 82                   | 64      | 103    | 77     | 123     | 86     | 137   | 94     | 150    | 103    | 164 |  |
| 2343   | 3.3 | 52 | 85                   | 64      | 106    | 77     | 127     | 86     | 141   | 94     | 155    | 103    | 169 |  |
| 2186   | 3.4 | 52 | 87                   | 64      | 109    | 77     | 131     | 86     | 145   | 94     | 160    | 103    | 174 |  |
| 2037   | 3.5 | 52 | 90                   | 64      | 112    | 77     | 135     | 86     | 149   | 94     | 164    | 103    | 179 |  |
| 1895   | 3.6 | 52 | 92                   | 64      | 115    | 77     | 138     | 86     | 154   | 94     | 169    | 103    | 184 |  |
| 1756   | 3.7 | 52 | 95                   | 64      | 119    | 77     | 142     | 86     | 158   | 94     | 174    | 103    | 189 |  |
| 1615   | 3.8 | 52 | 98                   | 64      | 122    | 77     | 146     | 86     | 162   | 94     | 178    | 103    | 195 |  |
| 1462   | 3.9 | 52 | 100                  | 64      | 125    | 77     | 150     | 86     | 166   | 94     | 183    | 103    | 200 |  |
| 1190   | 4.0 | 52 | 103                  | 64      | 128    | 77     | 154     | 86     | 171   | 94     | 188    | 103    | 205 |  |

NOTE:

Lt AND Lr VALUES IN FEET.

FOR PAVEMENT WIDTHS GREATER THAN 72 FEET USE Lr VALUES DEVELOPED BY THE DESIGN SOFTWARE.

LISTED RADIUS IS THE MINIMUM ALLOWABLE RADIUS FOR THE CORRESPONDING E, Lt, AND Lr VALUES.

## DESIGN FACTORS FOR A DESIGN SPEED OF 60 MPH (URBAN) USING E= 4 % MAX.

|        |     |     |       |       | F      | PAVEME  | NT WID  | TH     |        |        |        |         |     |
|--------|-----|-----|-------|-------|--------|---------|---------|--------|--------|--------|--------|---------|-----|
| RADIUS | E   | 24  | FT    | 36    | FT     | 48      | FT      | 60     | FT     | 66     | FΤ     | 72      | FT  |
| (FEET) | (%) | D   | ESIGN | SOFTW | VARE E | QUIVALI | ENTS (N | NUMBEF | R OF L | ANES . | AT LAN | IE WIDT | TH) |
|        |     | 1 @ | 12'   | 1.5   | ⊉ 12'  | 2 @     | ! 12'   | 3 @    | 10'    | 3 @    | 2 11'  | 3 @     | 12' |
|        |     | Lt  | Lr    | Lt    | Lr     | Lt      | Lr      | Lt     | Lr     | Lt     | Lr     | Lt      | Lr  |
| 10000  | NC  | 0   | 0     | 0     | 0      | 0       | 0       | 0      | 0      | 0      | 0      | 0       | 0   |
| 7131   | 2.0 | 54  | 54    | 67    | 67     | 80      | 80      | 89     | 89     | 98     | 98     | 107     | 107 |
| 6663   | 2.1 | 54  | 56    | 67    | 70     | 80      | 84      | 89     | 94     | 98     | 103    | 107     | 112 |
| 6232   | 2.2 | 54  | 59    | 67    | 74     | 80      | 88      | 89     | 98     | 98     | 108    | 107     | 118 |
| 5829   | 2.3 | 54  | 62    | 67    | 77     | 80      | 92      | 89     | 103    | 98     | 113    | 107     | 123 |
| 5451   | 2.4 | 54  | 64    | 67    | 80     | 80      | 96      | 89     | 107    | 98     | 118    | 107     | 128 |
| 5092   | 2.5 | 54  | 67    | 67    | 84     | 80      | 100     | 89     | 112    | 98     | 123    | 107     | 134 |
| 4746   | 2.6 | 54  | 70    | 67    | 87     | 80      | 104     | 89     | 116    | 98     | 128    | 107     | 139 |
| 4408   | 2.7 | 54  | 72    | 67    | 90     | 80      | 108     | 89     | 120    | 98     | 132    | 107     | 144 |
| 4098   | 2.8 | 54  | 75    | 67    | 94     | 80      | 112     | 89     | 125    | 98     | 137    | 107     | 150 |
| 3818   | 2.9 | 54  | 78    | 67    | 97     | 80      | 116     | 89     | 129    | 98     | 142    | 107     | 155 |
| 3563   | 3.0 | 54  | 80    | 67    | 100    | 80      | 120     | 89     | 134    | 98     | 147    | 107     | 160 |
| 3330   | 3.1 | 54  | 83    | 67    | 104    | 80      | 124     | 89     | 138    | 98     | 152    | 107     | 166 |
| 3114   | 3.2 | 54  | 86    | 67    | 107    | 80      | 128     | 89     | 143    | 98     | 157    | 107     | 171 |
| 2913   | 3.3 | 54  | 88    | 67    | 110    | 80      | 132     | 89     | 147    | 98     | 162    | 107     | 176 |
| 2724   | 3.4 | 54  | 91    | 67    | 114    | 80      | 136     | 89     | 152    | 98     | 167    | 107     | 182 |
| 2544   | 3.5 | 54  | 94    | 67    | 117    | 80      | 140     | 89     | 156    | 98     | 172    | 107     | 187 |
| 2372   | 3.6 | 54  | 96    | 67    | 120    | 80      | 144     | 89     | 160    | 98     | 176    | 107     | 192 |
| 2202   | 3.7 | 54  | 99    | 67    | 124    | 80      | 148     | 89     | 165    | 98     | 181    | 107     | 198 |
| 2030   | 3.8 | 54  | 102   | 67    | 127    | 80      | 152     | 89     | 169    | 98     | 186    | 107     | 203 |
| 1842   | 3.9 | 54  | 104   | 67    | 130    | 80      | 156     | 89     | 174    | 98     | 191    | 107     | 208 |
| 1505   | 4.0 | 54  | 107   | 67    | 134    | 80      | 160     | 89     | 178    | 98     | 196    | 107     | 214 |

NOTE:

Lt AND Lr VALUES IN FEET.

FOR PAVEMENT WIDTHS GREATER THAN 72 FEET USE Lr VALUES DEVELOPED BY THE DESIGN SOFTWARE.

LISTED RADIUS IS THE MINIMUM ALLOWABLE RADIUS FOR THE CORRESPONDING E, Lt, AND Lr VALUES.

| =20 RADIUS(FT) E(X) 1800 NC 1213 2.0 1148 2.1 1090 2.2 1036 2.3 987 2.4 941 2.5 899 2.6 860 2.7 824 2.8 790 2.9 |               |       | DESIGN      | S     |      | FT   WIDTH=22 FT EQUIVALENTS (NUMBER | WIDTH=ZZ<br>ENTS (NUME | 1=22 F  <br>(NUMBER | ᅴ뇽  | WIDTH   | WIDTH=24 FT<br>ANES AT LANE | WIDTH) | WIDTH=48<br>(H) | =48 FT   | Z        | INTERCHANGE | ANGE RAMPS       | L L  |
|-----------------------------------------------------------------------------------------------------------------|---------------|-------|-------------|-------|------|--------------------------------------|------------------------|---------------------|-----|---------|-----------------------------|--------|-----------------|----------|----------|-------------|------------------|------|
|                                                                                                                 |               | 1@ 9' |             |       |      |                                      | -                      | @ 11 <sub>-</sub>   |     | 1       |                             |        | ~               | @ 12'    | 16       | FT          | 18               | FT   |
|                                                                                                                 | ) Lt          | Lr    | w           | Lt    | Lr   | w                                    | Lt                     | Lr                  | W   | Lt      | Lr                          | M w    | Lt L            | Lr w     | Lt       | Lr          | Lt               | Lr   |
|                                                                                                                 |               | 0 65  | 0.0         | 0 %   | 0 %  | 0.0                                  | 0 0 2.                 | 0 %                 | 0.0 | 0 2.3.3 | 0 0                         | 0.0    |                 | 0.0 0.0  | 0 65     | 0 62        | 0 4              | 0 4  |
|                                                                                                                 | -             | 59    | 2.1         | 28    | 29   | 0.0                                  | 30                     |                     | 0.0 | 33      | -                           |        | 49 5            | $\vdash$ |          | 40          | 41               | 43   |
|                                                                                                                 | $\perp$       | 59    | 2.1         | 28    | 30   | 0.0                                  | 30                     |                     | 0.0 | 33      | 36 (                        |        | _               | 54 0.0   | 39       | 42          | 14               | 45   |
|                                                                                                                 | 4             | 200   | 7.7         | 87 00 | 22   | 0.0                                  | 202                    |                     | 0.0 | 55      | +                           | +      | +               | +        | -        | 4 4         | 4 -              | 4 0  |
|                                                                                                                 | +             | 59    | 2.2         | 28    | 34   | 0.0                                  | 30                     | +                   | 0.0 | 33      | +                           | 0.0    | 64              | +        | 3.9      | 2 4 6       | + 4              | 5 7  |
|                                                                                                                 |               | 59    |             | 28    | 36   | 0.0                                  | 30                     | 39                  | 0.0 | 33      |                             | -      | $\vdash$        | $\vdash$ |          | 20          | 41               | 53   |
|                                                                                                                 | $\Box$        | 59    | 2.3         | 28    | 37   | 0.0                                  | 30                     |                     | 0.0 | 33      | H                           |        |                 | $\vdash$ |          | 52          | 41               | 22   |
|                                                                                                                 | _             | 59    | 2.3         | 28    | 38   | 0.0                                  | 30                     | 42                  | 0.0 | 33      | _                           | +      | +               | 69 0.0   | _        | 54          | 4 ,              | 57   |
|                                                                                                                 | $\perp$       | 29    |             | 87 8  | 04   | 0.0                                  | 30                     | +                   | 0.0 | 55      | +                           | +      | +               | +        | +        | 200         | 4 4              | 50   |
|                                                                                                                 | +             | 200   | 4.7         | 0 00  | 14   | 0.0                                  | 200                    | 4<br>7<br>7         | 0.0 | 33      | 64 6                        | 0.0    | +               | 76 0.0   | -        | 200         | 4 4              | 0 2  |
|                                                                                                                 | +             | 29    |             | 28    | 4 4  | 0.0                                  | 30                     |                     | 0.0 | 33      |                             | +      | +               | +        |          | 61          | 14               | 65   |
|                                                                                                                 |               | 59    | 2.5         | 28    | 45   | 0.0                                  | 30                     |                     | 0.0 | 33      |                             |        | 8 64            |          |          | 63          | 41               | 67   |
|                                                                                                                 | $\Box$        | 59    | 2.6         | 28    | 46   | 0.0                                  | 30                     | 51                  | 0.0 | 33      |                             | 0.0    |                 | -        |          | 65          | 41               | 69   |
|                                                                                                                 | _             | 59    | 2.6         | 28    | 8 4  | 0.0                                  | 30                     |                     | 0.0 | 33      | +                           | +      | +               | +        | +        | 67          | 4 ;              | 7    |
|                                                                                                                 | +             | 29    | 7.7         | 87.8  | 94 0 | 0.0                                  | 30                     | +                   | 0.0 | 55      | +                           | +      | 8 0             | +        | +        | 69          | 4 4              | 7.5  |
|                                                                                                                 | +             | 000   | 7.7         | 07 00 | 200  | 0.00                                 | 200                    | +                   | 0.0 | 22      | +                           | 0.0    | +               | +        | 200      | 77          | - <del>-</del> - | 0 7  |
|                                                                                                                 | +             | 59    | 2.0         | 28    | 53   | 0.0                                  | 30                     | 7,00                | 0.0 | 33      | 64                          | +      |                 | +        | +        | 75          | 4                | / 6/ |
|                                                                                                                 | ┝             | 59    | 2.9         | 28    | 55   | 0.0                                  | 30                     |                     | 0.0 | 33      |                             | -      |                 | $\vdash$ |          | 77          | 14               | 2    |
|                                                                                                                 |               | 59    | 2.9         | 28    | 56   | 0.0                                  | 30                     |                     | 0.0 | 33      |                             | 0.     |                 |          |          | 79          | 41               | 83   |
|                                                                                                                 | Н             | 09    | 3.0         | 30    | 63   | 2.0                                  | 30                     | 63                  | 0.0 | 33      | Н                           | 0.0    |                 | Н        |          | 80          | 41               | 82   |
|                                                                                                                 | +             | 62    | 3.0         | 30    | 64   | 2.0                                  | 30                     |                     | 0.0 | 333     | 0/2                         | 0 (    | 10 64           | 105 0.0  | 39       | 82          | 4 ,              | 8/2  |
|                                                                                                                 | +             | 50    | 5.0         | 30    | 99   | 2.0                                  | 202                    |                     | 0.0 | 33      | +                           | +      | +               | +        | +        | 40          | 4 4              | 0 0  |
|                                                                                                                 | +             | 20    | <br>        | 205   | 200  | 7.7                                  | 30                     | +                   | 2.0 | 33      | +                           | +      | +               | 112 0.0  | 30       | 8 8         | 4 4              | 92   |
|                                                                                                                 | 29 29         | 89    | 3.2         | 31    | 71   | 2.2                                  | 30 20                  | 02                  | 0.0 | 33      | 2/2                         | 0.0    | 49              | 115 0.0  |          | 8 6         | 4                | 96   |
|                                                                                                                 | $\vdash$      | 70    | 3.3         | 31    | 73   | 2.3                                  | 30                     |                     | 0.0 | 33      | +                           | +      | +               | +        | $\sqcup$ | 92          | 41               | 86   |
|                                                                                                                 | _             | 71    | 3.3         | 31    | 74   | 2.3                                  | 30                     |                     | 0.0 | 33      | 80                          | _      | 49              | 120 0.0  | _        | 94          | 14               | 100  |
|                                                                                                                 | +             | 73    | 4.5         | 31    | 76   | 4.7                                  | 30                     |                     | 0.0 | 33      | +                           | +      | +               | +        | +        | 96          | 14 6             | 102  |
|                                                                                                                 | +             | 76    | ) K         | 2 5   | 0 0  | 5.7                                  | 200                    | 0 0                 | 0.0 | 2 6     | +                           | 0.0    | +               | +        | 7 0      | 9 5         | 4                | 106  |
|                                                                                                                 | +             | 7 8   | 3.6         | 3 5   | 8 8  | 2.6                                  | 300                    | +                   | 0.0 | 33      | +                           | +      | +               | 129 0.0  | +        | 101         | 14               | 108  |
|                                                                                                                 | _             | 80    |             | 31    | 83   | 2.7                                  | 30                     |                     | 0.0 | 33      | $\vdash$                    | 0.     | $\vdash$        | $\vdash$ | Ľ        | 103         | 41               | 110  |
|                                                                                                                 | Н             | 82    | 3.8         | 31    | 85   | 2.8                                  | 30                     |                     | 0.0 | 33      | Н                           | 0      | Н               | Н        | 39       | 105         | 41               | 112  |
|                                                                                                                 | $\dashv$      | 83    | 3.9         | 32    | 87   | 2.9                                  | 30                     | $\dashv$            | 0.0 | 33      | $\dashv$                    | 4      | $\dashv$        | +        | 4        | 107         | 41               | 114  |
|                                                                                                                 | +             | 82    | 0.0         | 32    | 83   | 2.9                                  | 30                     | +                   | 0.0 | 33      | +                           | +      | +               | +        | 4        | 109         | 4 1              | 116  |
|                                                                                                                 | +             | ò     | 5 4         | 32    | 9.3  | 0.7                                  | 5.5                    | 0.0                 | 2.0 | 22      | +                           | 0.0    | 54              | 27 2.0   | 60 60    | 113         | 4                | 120  |
|                                                                                                                 | +             | 6     | 4.2         | 32    | 95   | 3.2                                  | 33                     | +                   | 2.7 | 33      | 86                          | +      | +               | +        | $\perp$  | 115         | 14               | 122  |
|                                                                                                                 | _             | 92    | 4.3         | 32    | 97   | 3.3                                  | 34                     |                     | 2.3 | 33      | $\vdash$                    | ╀      | ╀               | ╁        | -        | 117         | 41               | 124  |
|                                                                                                                 | Н             | 94    | 4.4         | 32    | 66   | 3.4                                  | 34                     | Н                   | 2.4 | Н       | Н                           | 0.     | Н               | $\vdash$ | 39       | 119         | 41               | 126  |
|                                                                                                                 | +             | 96    |             | 333   | 101  | 3.5                                  | 34                     | +                   | 2.5 | +       | 103                         | 0      | +               | 173 3.0  | 1        | 120         | 4                | 128  |
|                                                                                                                 | +             | 100   | 5.4         | 5.5   | 202  | 2 7                                  | 4 6                    | 100                 | 2.0 | 22      | +                           | 0.0    | 56              | 181 7.4  | 60 60    | 124         | 4                | 132  |
|                                                                                                                 | +             | 102   | 8.4         | 333   | 107  | 80.00                                | 34                     | +                   | 2 0 | 333     | +                           |        | +               | +        | 1        | 126         | 14               | 134  |
|                                                                                                                 | $\vdash$      | 104   |             | 33    | 109  | 3.9                                  | 34                     |                     | 2.9 | 33      | $\vdash$                    | 0      | +               | +        | <u> </u> | 128         | 41               | 136  |
|                                                                                                                 | $\vdash$      | 106   | 5.0         | 33    | 111  | 4.0                                  | 34                     | 115                 | 3.0 | 36      |                             |        |                 | $\vdash$ |          | 130         | 41               | 138  |
|                                                                                                                 | $\Box$        | 108   | 5.1         | 33    | 113  | 4.1                                  | 35                     |                     | 3.1 | 36      | 122                         | 2.1    | $\dashv$        | $\vdash$ |          | 132         | 41               | 140  |
|                                                                                                                 | $\rightarrow$ | 110   | 5.2         | 33    | 115  | 4.2                                  | 35                     | +                   | 3.2 | 36      | 4                           | 7      | +               | 202 4.4  | 4        | 134         | 4                | 142  |
|                                                                                                                 | +             | 112   |             | 33    | 417  | 4.3                                  | 35                     | +                   | 3.3 | 36      | +                           | 2      | +               | +        | 4        | 136         | - 4              | 144  |
|                                                                                                                 | +             | 115   | ر<br>ا<br>ا | 40    | 12.0 | 4 ر<br>ن<br>م                        | 35                     | 125                 | 5.5 | 30      | 671                         | 2.5    | 2 2             | 212 5.0  | 200      | 2 5         | 4 4              | 40 7 |
|                                                                                                                 | +             | 119   | 2.8         | 34    | 124  | 0 4                                  | 35                     | +                   | 2 6 | 37      | +                           | +      | +               | +-       |          | 141         | 14               | 150  |
|                                                                                                                 | +             | 12.2  | 5.9         | 34    | 127  | 6.4                                  | 36                     | +                   | 3.0 | 37      | -                           | 0 0    | +               | +        | +        | 143         | 41               | 152  |
|                                                                                                                 | $\vdash$      | 124   | 6.1         | 34    | 129  | 5.1                                  | 36                     | 135                 | 5.7 | 37      | }                           | ·-     | +               | 233 6.2  | 39       | 145         | 41               | 154  |
|                                                                                                                 | $\vdash$      | 127   | 6.3         | 35    | 132  | 5.3                                  | 36                     | +                   | 4.3 |         | ļ.,                         | 3      |                 | 9        |          | 147         | 41               | 156  |
|                                                                                                                 | $\sqcup$      | 130   | 6.5         | 35    | 135  | 5.5                                  | 36                     |                     | 4.5 | Н       | 145                         | 5.5    | 64 2            | 246 7.0  | 39       | 149         | 41               | 158  |
|                                                                                                                 | Н             | 133   | 6.8         | 35    | 138  | 5.8                                  | 37                     | Н                   | 4.8 | 38      | 149                         | Н      | Н               | 7        |          | 151         | 41               | 160  |
|                                                                                                                 |               | 139   | 7.6         | 36    | 144  | 6.6                                  | 38                     |                     |     |         | 155 4                       |        |                 | 6        |          | 153         | 41               | 162  |

20 MPH DESIGN SPEED

CATION ENCE

CORRESPONDING

THE MINIMUM ALLOWABLE RADIUS FOR

 $\overline{S}$ 

IN FEET. LISTED RADIUS

REV. 1/07 802.34

|                           |            |           |      |      |          |      |       |       |      |            |                  |      |          |      |                                         |     |        |       |      |      |           | _        |     |                  |          |       |     |      |      |       |       |     |        |          |         |     |                      |       |                            |     |       |     |         |      |       |      |                | TC-          |
|---------------------------|------------|-----------|------|------|----------|------|-------|-------|------|------------|------------------|------|----------|------|-----------------------------------------|-----|--------|-------|------|------|-----------|----------|-----|------------------|----------|-------|-----|------|------|-------|-------|-----|--------|----------|---------|-----|----------------------|-------|----------------------------|-----|-------|-----|---------|------|-------|------|----------------|--------------|
| กู                        | 님          | ۲         | 0 7  | 45   | 48       | 202  | 54    | - 299 | 288  | 200        | 55               | 67   | 69       | 77   | 75                                      | 78  | 200    | 202   | 98   | 88   | 93        | 95       | 97  | 99               | 103      | 108   | 110 | 112  | 116  | 120   | 123   | 125 | 129    | 131      | 133     | 138 | 142                  | 144   | 4<br>5<br>4<br>8<br>4<br>8 | 150 | 153   | 157 | 159     | 163  | 165   | 168  | 1/0            | Į ,          |
| ₹                         | 78         | ť         | 0 ;  | 43   | 43       | 43   | 5.4   | 43    | 43   | 4 د<br>د ا | 5.4              | 43   | 43       | 43   | 543                                     | 43  | 245    | 54    | 43   | 43   | 43        | 43       | 43  | 43               |          | 43    | 43  | 43   | 43   | 43    | 43    | 43  | 43     | 43       | 43      | 43  | 43                   | 43    | 43                         | 43  | 43    | 43  | 43      | 43   | 43    | 43   | 2 4 2          | V            |
| WIDTH                     |            | 7         | 0 0  | 42   | 44       | 946  | 0 000 | 52    | 54   | 0 00       | 0 6              | 62   | 64       | 99   | 200                                     | 72  | 4 4    | 0 0   | 08   | 82   | + 0<br>98 | 88       | 06  | 94               | 96       | 100   | 102 | 401  | 80   | 110   | 1 4 1 | 116 | 202    | 122      | 124     | 128 | 132                  | 134   | 38                         | 140 | 142   | 146 | 148     | 152  | 154   | 951  | 160            | 3            |
|                           | 16 FT      | Ľ         | 0 5  | 9 9  | 40       | 0 0  | 2 5   | 10 40 | 04   | 2 5        | 1 04             | +    | +        | 040  | 40 4                                    | 40  | )<br>) | 404   | 40   | 40   | +         | +        | +   | 404              | $\vdash$ | 40 40 | H   | 04 6 | 404  | 40    | 40    | 0 4 | 04 04  | 40       | 40 4    | 40  | 04 04                | 40    | 04 04                      | +   | 40    | ++  | 40      | +    | +     | 04   | +              |              |
| _                         |            | $\dashv$  | +    | +    | $\vdash$ | _    | +     | +     |      | +          |                  | 1    | -        | _    | -                                       |     | +      | +     | +    | 0.0  |           | $\vdash$ | _   | +                | 0.0      |       |     | +    |      |       | -     |     | -      | $\vdash$ | 00      |     |                      | 0 0   | 7 4                        | 4   | φ α   |     | 2 4     | 4. G | +     | 7 4  |                |              |
| -<br>D                    | 12         | -         | +    |      |          | +    | +     |       | H    | +          |                  |      |          | +    |                                         |     | +      | +     | +    |      | +         |          | +   | +                | $\vdash$ |       |     | +    |      |       | +     |     | 7 6    | +        | +       | +   |                      |       | 2 2                        |     | 2 2   | +   | 6 3     | - r. | 51 4  | (0 1 | δ 4<br>7       |              |
| :                         | 2 @        |           | +    | 54   |          | +    | +     |       | 7 7  | 1          |                  | 8    | 80       | 00 C | 8 6                                     | ο · | 5 6    | 3 2   | 103  |      | 1100      |          |     | 2   3            |          | 129   | Н   | 134  | 5 55 | 142   | 147   | 150 | T 5    | 12       | 162     | 165 | 170                  | 187   | 196                        |     | 3 203 |     | 216     | +    | 25    | 2 0  | 24,            | - 1          |
| WIDT                      |            | _         | _    | 52   |          |      | +     |       | 52   | 2 2        | 2 5              | 52   | 52       | 52   | 52                                      | 52  | 2, 2,  | 20 5  | 52   | 20 4 | 52        | 2        | 201 | 52               | 20 4     | 52    | 2   | _    | 52   | 52    | 52    | 52  | 52     | 52       | 52      | 25  | 2 2                  | 200   | 5 0                        |     | 20 20 |     | 50      |      | +     | 61   | 64             |              |
| LANE                      | -7         | >         | 0.0  | 0.0  | 0.0      | 0 0  | 5 0   | 0.0   | 0.0  | 5 0        | 5 0              | 0.0  | 0.0      | 0.0  | 0.0                                     | 0.0 | 0.0    | 5 0   | 0.0  | 0.0  | 5 0       | 0.0      | 0.0 | )<br>)<br>)<br>( | 0.0      | 0.0   | 0.0 | 0.0  | 0.0  | 0.0   | 0.0   |     | 0.0    |          | 0.0     |     | 0.0                  |       | 0.0                        |     | 0.0   | 0.0 | 0.0     | 0.0  |       | 2.1  | 2.5            | - L          |
| ▼                         | 1@ 12      | ۲         | 0 1  | 36   | 38       | 40   | 42    | 45    | 47   | 4 π<br>Σ   | 2 2              | 54   | 22       | 57   | 80                                      | 62  | 64     | 90    | 69   | 71   | 74        | 76       | 78  | 2 2              | 83       | 86    | 88  | 90   | 93   | 95    | 86    | 100 | 102    | 105      | 107     | 199 | 114                  | 115   | 13                         | 120 | 122   | 126 | 127     | 13.1 | 143   | 146  | 154            |              |
| -                         |            | Lt        | 0 1  | 35   | 35       | 35   | 25    | 35    | 35   | 35         | 25               | 35   | 35       | 35   | 35                                      | 35  | 35     | 35    | 35   | 35   | 3.5       | 35       | 35  | 35               | 35       | 35    | 35  | 35   | 35   | 35    | 35    | 35  | 35     | 35       | 35      | 35  | 35                   | 35    | 35                         | 35  | 35    | 35  | 35      | 35   | 38    | 38   | 39             |              |
| ER OF                     |            | *         | 0.0  | 0.0  | 0.0      | 0.0  |       | 0.0   | 0.0  | 0 0        |                  | 0.0  | 0.0      | 0.0  | 0.0                                     | 0.0 | 0.0    | 0.0   | 0.0  | 0.0  |           | 0.0      | 0.0 |                  | 0.0      | 0.0   | 0.0 | 0.0  | 0.0  | 0.0   | 0.0   | 0.0 | 0.0    | 0.0      | 0.0     | 0.0 | )<br>)<br>)<br>(     | 2.0   | 2.2                        |     | 2.3   |     | 2.6     | 2.7  |       |      | 3.8            | -            |
| (NUMBER                   | 11.        | ۲         | 0 6  | 33   | 35       | 37   | 000   | 14    | 43   | 4 4        | 0<br>4<br>8<br>8 | 49   | 51       | 52   | 55                                      | 57  | 20     | 09    | 63   | 65   | 000       | 2        | 17  | 0/24             | 7.6      | //    | 8 2 | 82   | 85   | 87    | 8 6   | 92  | 95     | 96       | 86      | 101 | 10<br>10<br>10<br>10 | 115   | 120                        | 121 | 124   | 128 | 131     | 135  | 138   | 140  | 143            | 1            |
| ENTS (NUME                | ·          | Ľ         | 0 2  | 32   | 32       | 33   | 32    | 32    | 32   | 22         | 20 22            | 32   | 32       | 32   | 32                                      | 32  | 52     | 25    | 32   | 32   | 32        | 32       | 32  | 32               | 32       | 32    | 32  | 32   | 32   | 32    | 32    | 32  | 32     | 32       | 32      | 32  | 32                   | 35    | 35                         | 35  | 35    | 36  | 36      | 36   | 36    | 36   | 37             |              |
| EQUIVALENTS               |            | >         | 0.0  | 0.0  | 0.0      | 0.0  |       | 0.0   | 0.0  |            | 0 0              |      | 0.0      | 0.0  | 0.0                                     | 0.0 | 0.0    | 0.0   | 0.0  | 0.0  | 0.0       | 0.0      | 0.0 | 0.0              | 0.0      | 2.0   | 2.0 | 2.1  | 2.2  | 2.2   | 2.4   | 2.4 | 2.5    | 2.6      | 2.7     | 8.0 | D 0                  | 3.0   | 3.2                        | 3.2 | 3.3   | 3.5 | 3.6     | ν.ν  | 0.4   | 1.4  | δ. 4.<br>δ. 8. | ] 2<br> <br> |
|                           | © 10¹      |           |      | 30   |          | +    | +     |       |      |            | 7 1 2            | +    | +        |      | 50                                      | 7 - | ى<br>ا | 2 4   | 0 00 |      | 000       | 1 W      |     | 0 89             |          | 0/0   | Н   | 83   | 86   | 88    | 92    | 93  | 95     | 66       | 101     | 05  | 20 80                | 111   | হ <u>হ</u>                 | 116 | 171   | 123 | 125     | 77   | 32    | 35   | 142            | - !          |
| SOFTWARE                  | -          |           |      | 29   |          |      | +     |       | 0 0  | D) C       | ח ס              | 29 4 | +        | +    | 29                                      |     | +      | +     |      |      | 500       |          | +   | 500              | Н        | 32    | 12  | 20   | y 0  | 2 4   | ) N)  | 100 | 3 KJ   | 0 10     | ν ν<br> | 100 | ο 16<br>- 1          | 4     | 4 4                        | 4   | 4 4   | 4   | 4 4     | 4 rč | 5 6   |      | 36 1           | - (          |
| IGN S                     |            |           | +    |      |          | +    | +     |       |      | 7 (        | 1 0              | +    |          | +    |                                         |     | +      | +     |      |      | 10        | 2        |     | 00               |          |       | 3 0 | 5 2  | - 2  | 2 2 2 | 3 4   | 4 3 | 2 10   |          | 5 5     |     | 2) Q                 | 5 ,   | 5 N                        | 3 2 | δ 4   | 2   | 10,1    | ) K  | 30    | 1 3  | N 00           |              |
|                           | <u>-</u> 6 |           | +    | 2.0  | H        |      | 7 6   |       | H    | 7 0        | 7 0              | 2    | $\dashv$ | +    | 2.4                                     |     | +      | +     | +    |      | , ,       |          | 2 0 | , ,              | +        | 3.0   |     | W 1  | , W  | 7 3.2 | , w   | 3.7 | 2, 12, | 3.6      | 2 0     | 3.0 | 2 K                  | 0.4.0 | 4 4                        | 4   | 4 4   | 4.  | 4.      | 4 4  | 7 5.0 |      |                | 1            |
|                           | 10         |           | -    | 74   |          |      | 74    | _     |      | 7          | 7                | 74   | 74       | 74   | 74                                      | 74  | 4/     | 74    | 74   | 74   | 74        | 74       | 74  | 74               | 74       | 75    | 77  | 79   | 82   | 84    | 88    | 88  | 93     | 95       | 97      | 100 | 104                  | 106   | 19                         | 111 | 114   | 118 | 120     | 12,  | 12.   | 129  | 136            |              |
|                           |            |           |      |      |          |      |       |       | 55   |            |                  |      | 4        | 45   | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 4.  |        | 20 00 | J 62 | 37   | 35        | 34       | 33  | 32               | 31       | 5 8   | 31  | 31   | 2 5  | 31    | 3 5   | 31  | 2 5    | 32       | 32      | 32  | 32                   | 32    | 32                         | 32  | 33    | 33  | 33      | 33   | 33    | 34   | 34             |              |
| <u>≻</u><br>-⊑            |            | ) E(;;)   |      | 2.1  | 2.2      | 2.3  | 7.1   | 2.6   | 2.7  | 2.0        | 2.3              | 3.1  | 3.2      | 3.3  | 3.5                                     | 3.6 | \S.\   | 0,0   | 6.4  | 4.1  | 4.3       | 4.4      | 4.5 | 4.7              | 8.4      | 5.0   | 5.1 | 5.2  | 5.4  | 5.5   | 5.7   | 5.8 | 6.0    | 6.1      | 6.2     | 6.4 | 0.0                  | 6.7   | 0.0                        | 7.0 | 7.1   |     | <u></u> | - 1  | -     |      | 00             |              |
| VELOCITY<br>=25           | 7-         | RADIUS(FT | 2500 | 1664 | 1579     | 1502 | 1366  | 1306  | 1250 | 1140       | 1104             | 1061 | 1021     | 983  | 948                                     | 882 | 852    | 795   | 769  | 744  | 969       | 674      | 652 | 612              | 592      | 555   | 537 | 519  | 485  | 468   | 437   | 423 | 396    | 383      | 371     | 347 | 326                  | 315   | 295                        | 286 | 276   | 258 | 248     | 229  | 219   | 209  | 171            | NOTE:        |
| ECIFIC <i>A</i><br>EFEREI | IOITA      |           | Τ    |      |          |      |       |       |      |            |                  |      |          |      |                                         |     |        |       |      |      |           |          |     |                  | Cl       |       |     |      |      |       |       |     |        |          |         |     |                      |       |                            |     |       |     |         |      | ш     |      |                |              |
|                           |            |           |      |      |          |      |       |       |      |            |                  |      |          |      |                                         |     |        |       |      |      |           |          |     |                  | ЭE       |       |     |      |      |       |       |     |        |          | _       |     |                      |       |                            |     |       |     |         |      |       |      |                | REV.         |

VIRGINIA DEPARTMENT OF TRANSPORTATION

| S-5.0            |               |          | 0 4    | υ 4<br>ω   | 250       | 52  | 54  | 57         | 59    | 10         | 59            | 89  | 70       | 72   | 2 1        | 79          | 25       | 84       | 98   | 2000                                     | 93   | 95       | 97       | 99   | 104  | 106 | 5 108 | 113   | 112 | 117      | 120 | 124       | 126      | 129      | 131          | 135   | 138   | 140      | 142 | 14.7             | 149      | 151   | 153  | 158               | 160      | 162      | 165            | 169     | 171      | 174   | 176 | 2 2      |
|------------------|---------------|----------|--------|------------|-----------|-----|-----|------------|-------|------------|---------------|-----|----------|------|------------|-------------|----------|----------|------|------------------------------------------|------|----------|----------|------|------|-----|-------|-------|-----|----------|-----|-----------|----------|----------|--------------|-------|-------|----------|-----|------------------|----------|-------|------|-------------------|----------|----------|----------------|---------|----------|-------|-----|----------|
| RAMPS            | 00            | Ļ        | 0 4    | 45         | 45        | 45  | 45  | 45         | 45    | ر 4<br>د م | 45            | 45  | 45       | 45   | 45         | 45          | 45       | 45       | 45   | 45<br>77                                 | 45   | 45       | 45       | 45   | 45   | 45  | 45    | 45    | 45  | 45       | 45  | 45        | 45       | 45       | 45           | 45    | 45    | 45       | 45  | 45               | 45       | 45    | 45   | 45                | 45       | 45       | 45<br>7.       | 45      | 45       | 45    | 45  | 45       |
| INTERCHANGE R    | FT            | Ľ        | 0 7    | 4 4<br>د م | 47        | 20  | 52  | 54         | 56    | 200        | 00 69         | 64  | 67       | 69   | 7 2        | 75          | 77       | 79       | 82   | 40 0                                     | 88   | 06       | 92       | 94   | 99   | 101 | 103   | 10.0  | 109 | E        | 114 | 18        | 120      | 122      | 124          | 128   | 131   | 133      | 135 | 139              | 141      | 143   | 146  | 150               | 152      | 154      | 156<br>8 A A   | 160     | 163      | 165   | 167 | 169      |
| INTER            | 16 F          | t        | 0,     | 0 4 4      | 43        | 43  | 43  | 43         | 43    | 5 4 6      | 0 4 4<br>0 10 | 43  | 43       | 43   | 4 د<br>د د | 2 4 4 2 4 2 | 43       | 43       | 43   | 4 د<br>د د                               | 43   | 43       | 43       | 43   | 43   | 43  | 5 7   | 0 4 6 | 43  | 43       | 43  | 2 4 8 7 8 | 43       | 43       | 43           | 2 4 4 | 2 4 4 | 43       | 43  | 5 4 4<br>5 4 3 4 | 43       | 43    | 54 2 | 0 4<br>0 4<br>0 4 | 43       | 43       | 2 4 4<br>2 4 4 | 5 4 6 7 | 43       | 43    | 43  | 454      |
| T.               |               | *        | 0.0    | 0.0        | 0.0       | 0.0 | 0.0 | 0.0        | 0.0   | 0.0        | 0.0           | 0.0 | 0.0      | 0.0  | 0.0        | 0.0         | 0.0      | 0.0      | 0.0  | 0.0                                      | 0.0  | 0.0      |          | 0.0  |      | 0.0 | 0.0   | 0.0   | 0:0 | 0.0      | 0.0 |           | 0.0      | 0.0      | 0.0          | 0.0   | 0.0   | 0.0      |     | 0.0              | 0.0      |       | 0.0  | 0.0               | 0.0      |          | 0.0            |         | 2.4      | 2.6   | 7.8 | J.0      |
| WIDTH=48 F       | @ 12.         |          |        | +          | +         |     |     |            | 7.1   |            | / 08          | +   | $\Box$   | 88 8 | +          | 96          | Н        | $\dashv$ | +    | 10/                                      |      | Н        | +        | -    | 126  | +   | +     | 137   | +   | $\vdash$ | +   | +         | 153      | H        | +            | 161   | +     | $\vdash$ | +   | 178              | 180      | 183   | 186  | +                 | $\vdash$ | +        | +              | 224     | 228      | 233   | +   | $\dashv$ |
| WIDT             | 2             | =        | 0 4    | 22         | 55        | 55  | 55  | 55         | 55    | 22         | 55            | 55  | 55       | 55   | 55         | 55          | 55       | 55       | 55   | 22                                       | 55   | 55       | 55       | 55   | 55   | 55  | +     | +     | -   | Н        | +   | +         | Н        | $\vdash$ | +            | 20    | +     | $\vdash$ | +   | 55               |          | Н     | +    | +                 | Н        | +        | +              | +       | 09       | H     | +   | +        |
|                  |               | >        | 0.0    | 0.0        | 0.0       | 0.0 | 0.0 | 0.0        | 0.0   | 0.0        | 0.0           | 0.0 | 0.0      | 0.0  | 0.0        | 0.0         | 0.0      | 0.0      | 0.0  | 0.0                                      | 0.0  | 0.0      | 0.0      | 0.0  | 0.0  | 0.0 | 0.0   | 0.0   | 0.0 | 0.0      | 0.0 | 0.0       | 0.0      | 0.0      | 0.0          | 0.0   | 0.0   | 0.0      | 0.0 | 0.0              | 0.0      | 0.0   | 0.0  | 0.0               | 0.0      | 0.0      | 0.0            | 0.0     | 0.0      | 0.0   | 0.0 | _<br>    |
| 1=24<br>AT       |               | -        | +      | +          |           |     |     |            | 84 0  | +          | +             | +   | 57 (     | -    | +          |             | $\vdash$ | +        | +    | +                                        | 75   | Н        | +        | +    | 84 ( | +   | +     | 99    | +   | H        | 76  | +         | 102      | $\vdash$ | +            | 1108  | +     | $\vdash$ | 115 | +                | $\vdash$ | 122 ( | +    | 128               |          | +        | 133            | +       | +        | 140   | +   | -        |
| WIDTH=24         | 7 -           | Lt       | 0 1    | 77         | 37        | 37  | 37  | 37         | 37    | 7 2 7      | 37            | 37  | 37       | 37   | 2/2        | 37          | 37       | 37       | 37   | 2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/ | 37   | 37       | 37       | 37   | 37   | 37  | 37    | 37    | 37  | 37       | 37  | 37        | 37       | 37       | 37           | 37    | 37    | 37       | 37  | 37               | 37       |       | 37   | 37                |          |          | 37             | 37      | 37       |       | 37  |          |
|                  | 5             | >        | 0.0    | 0.0        | 0.0       | 0.0 | 0.0 | 0.0        | 0.0   | 0.0        | 0.0           | 0.0 | 0.0      | 0.0  | 0.0        | 0.0         | 0.0      | 0.0      | 0.0  | 0.0                                      | 0.0  | 0.0      | 0.0      | 0.0  | 0.0  | 0.0 | 0.0   | 0.0   | 0.0 | 0.0      | 0.0 | 0.0       | 0.0      | 0.0      | 0.0          | 0.0   | 0.0   | 0.0      | 0.0 | 0.0              | 0.0      | 0.0   | 0.0  | 0.0               | 0.0      | 0.0      | 0.0            | 2.7     | 2.2      | м.    | +   | D.       |
| WIDTH=22 FT      | NOMBE<br>@ 11 | ۲        |        | 75         | +         |     |     | 42 (       |       |            | / 4 / 6 / 6   |     | H        |      |            | 29 (        |          |          |      | 605                                      |      | Н        | +        | 74 ( | +    |     | +     | 282   | +   | H        | 68  | +         | Н        | Н        | +            | 99    | +     | H        | +   | 109              | $\vdash$ | Н     | +    | 117               | Н        | $\dashv$ | 122 (          | +       | -        | Н     | 145 |          |
|                  |               | ť        | 0 7    | 34         | 34        | 34  | 34  | 34         | 34    | +          | +             | +   |          |      | 42 24      |             | 34       | -        | +    |                                          | +    |          | 34       | 34   | 34   | +   | +     | 34    |     |          | 34  | +         | 34       | 34       | +            | 34    | +     | Н        | +   | 34               | 34       | 34    | +    | 34                |          | +        | 34             | 37      | 37       | Н     | 38  | _        |
| WIDTH=20 FT WIDT | - V           | *        | 0.0    | 0.0        | 0.0       | 0.0 | 0.0 | 0.0        | 0.0   | 0.0        | 0.0           | 0.0 | 0.0      | 0.0  | 0.0        | 0.0         | 0.0      | 0.0      | 0.0  | 0.0                                      | 0.00 | 0.0      | 0.0      | 0.0  | 0.0  | 0.0 | 0.0   | 0.0   | 0.0 | 0.0      | 0.0 | 0.00      | 2.0      | 2.0      | 2.1          | 1.7   |       |          | 5.3 | 4. 4             | 2.5      |       |      | 2.7               | 2.8      | 2.8      | 0.0            | 2.7     | 5.2      |       | 3.4 | 5.5      |
| WIDTH=20 FT      | 10. ©         |          | 0 7    | +          | +         |     |     |            | 40    | +          | 0 4 4         | +   | $\vdash$ | +    | +          | 54          | Н        | $\dashv$ | +    | 09                                       | +    | Н        | +        | +    | 70 ( | +   | +     | 2 9   | +   |          | +   | +         | 94       |          | +            | 101   | +     | $\vdash$ | 70  | 111              | 113 2    | Н     | +    | 121               |          | +        | 127            | 32      | 34       | 136   | +   | 141      |
| WIDTH            | - N           | Н        | 0 7    | 2 5        |           | _   |     |            | . 121 | +          | 2 15          |     | +        |      | 2 2        |             | 31       | H        | 12,1 | +                                        | 31   | Н        | 31       | 21   | 31   |     | 72 7  | 2 12  |     |          | 31  | +         |          |          | +            | 45    | +     | Н        | +   | +                | 35       | . 55  | -    | 35                | H        | +        | 35 1           | +       | +        | 36 1  | +   | 36       |
|                  |               | >        | 0.0    | 0.0        | 0.0       | 0.0 | 0.5 | 0.5        | 2.0   | - 1        | -   -         | 2.1 | 2.2      | 2.2  | 7.7        | 2.3         | 5.3      |          | 2.4  | 4.7                                      | + 40 | 2.5      | 2.5      | 9 9  | 2.6  |     | 2.7   | 7.7   | ω.  | ∞.       | 2.9 | 20.0      | 2.0      | 3.0      | -            | - 6   | 1     | H        | 4   | 4.0              | Ľ        |       | 4    | 1                 |          | 4        | 8.9<br>0.7     |         | 4.2      | F. 3  | +   | Ω        |
| 9                | 9 6           | Н        |        | +          | +         |     |     |            | 88    | +          | +             | +   | +        |      | -          | -           | Н        | -        | +    | +                                        | +    | $\vdash$ | $\dashv$ | +    | 88   | +   | +     | +     | +   | H        | +   | +         | $\vdash$ | Н        | 93           | +     | +     | $\vdash$ | +   | 106              |          | Н     | +    | +                 | Н        | +        | +              | +       | <u> </u> | 131 4 | +   | $\dashv$ |
| WIDTH=           | 1             | H        | +      | +          | +         |     |     |            | 89    | +          |               |     | 57 8     |      |            |             |          |          | +    |                                          | 43   | Н        | -        | +    | 39 8 |     | -     | 36    |     |          | +   | +         |          | $\vdash$ | $\perp$      | +     | +     | Н        | -   | 33               |          |       | +    | +                 | Н        | +        | +              | +       |          | 35    | +   | $\dashv$ |
|                  |               | E(;;)    |        |            | 1         |     |     |            | 2.6   | _          | _             | 1   |          |      |            | 3.5         | Ľ        | _        | `    | n c                                      | 0.1- | 4.2      | 4        | 1    | 4.6  |     | ω ς   | D C   | 5.1 |          | 4   | 1         |          |          |              | 1     | 1     |          |     | 6.5              |          |       | 1    | 1.                |          | 7.2      | 1              | 1.      | 9        |       | 4   | _        |
| DESIGN           | -30=          | î        | $^{+}$ |            | $\dagger$ |     |     |            | T     |            |               |     |          |      |            |             |          |          | +    |                                          |      |          |          |      |      |     |       |       |     |          |     |           |          | П        | $^{\dagger}$ |       |       |          |     |                  |          | П     | 1    |                   | Н        |          |                |         |          |       | t   | 1        |
| <u>9</u>         |               | RADIUS(F | 3500   | 24(        | 216       | 205 | 196 | <u>(</u> 2 | 371   | 7 / 1      | 157           | 151 | 145      | 741  | 155        | 125         | 121      | 117      | 113  |                                          | 102  | 66       | 96       | 93   | 877  | 8   | 82    | 77    | 75  | 72       | 200 | 99        | 64       | 62       | 09           | 200   | 54    | 53       | 51  | 4<br>0<br>0      | 46       | 45    | 44   | 4 4 1             | 40       | 38       | 36             | 348     | 33       | 320   | 30  | 707      |

TRANSITION CURVES - RURAL 30 MPH DESIGN SPEED

VIRGINIA DEPARTMENT OF TRANSPORTATION

SPECIFICATION REFERENCE

| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RADIU\$              | =35        |          |      | _   |     | 5      |                    |      |           |       | - 1   |       |      | į     |       | -    |          |      |         |              |              |                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------|----------|------|-----|-----|--------|--------------------|------|-----------|-------|-------|-------|------|-------|-------|------|----------|------|---------|--------------|--------------|------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RADIUS<br>50:<br>31: |            |          | - 1  |     |     | 1 0 10 |                    |      | 100 1     |       | _     | 0     |      | 2     | 0     | -    | ( א      | 0    |         |              |              | 18<br>FT               |
| N. C.   0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N. C. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 31,                  | 3(FT) E(); | $\perp$  | ۲    | *   |     | ۲      | *                  | Lt   | L         |       | LT    | r     | >    | Lt    | ۲     | *    |          | -    |         |              | $\vdash$     | Lt                     |
| Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 70                   | OC OC      | _        | 0 5  | 0.0 | _   | 0 22   | 0.0                | 0 22 | 0 5       |       | 0 2   | 0 2   | 0.0  | 0     | 0     | 0.0  | 0 0      | 0 0  | 0       | _            | 0            | 0 9                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 28                   | 36 2.3     | +        | 31   | 0.0 | 33  | 34     | 0.0                | 36   | 38        |       | 39    | 6 14  | 0.0  | 29    | 61    | 0.0  | 78       | 82   |         | +            | 0 00         | 0 00                   |
| 2.2         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0 <td>2.2. 50, 9.3. 0.2. 0.2. 0.2. 0.2. 0.2. 0.2. 0.2. 0</td> <td>28,</td> <td>35 2.2</td> <td><math>\vdash</math></td> <td>32</td> <td>0.0</td> <td>33</td> <td>36</td> <td>0.0</td> <td>36</td> <td>40</td> <td></td> <td>39</td> <td>43</td> <td>0.0</td> <td>59</td> <td>64</td> <td>0.0</td> <td>78</td> <td>98</td> <td>0</td> <td><math>\Box</math></td> <td>0.5</td> <td>φ.</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.2. 50, 9.3. 0.2. 0.2. 0.2. 0.2. 0.2. 0.2. 0.2. 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 28,                  | 35 2.2     | $\vdash$ | 32   | 0.0 | 33  | 36     | 0.0                | 36   | 40        |       | 39    | 43    | 0.0  | 59    | 64    | 0.0  | 78       | 98   | 0       | $\Box$       | 0.5          | φ.                     |
| 2.6         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0 <td>2.6</td> <td>28.</td> <td>35 2.2</td> <td><math>\perp</math></td> <td>32</td> <td>0.0</td> <td>33</td> <td>38</td> <td>0.0</td> <td>36</td> <td>40</td> <td></td> <td>39</td> <td>43</td> <td>0.0</td> <td>23</td> <td>64</td> <td>0.0</td> <td>78</td> <td>98</td> <td>0 0</td> <td>_</td> <td>000</td> <td>φ φ</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 28.                  | 35 2.2     | $\perp$  | 32   | 0.0 | 33  | 38     | 0.0                | 36   | 40        |       | 39    | 43    | 0.0  | 23    | 64    | 0.0  | 78       | 98   | 0 0     | _            | 000          | φ φ                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.5 6 8.3 10.3 2.0 3.4 4. 0 10.0 5 6 4.7 10.0 3 6 4.9 10.0 19.0 4.9 10.0 19.0 19.0 19.0 19.0 19.0 19.0 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 25                   | 73 2.4     | +        | 35   | 0.0 | 33  | 39     | 0.0                | 36   | 43        |       | 33    | 47    | 0.0  | 59    | 70    | 0.0  | 78       | 93   | 0       | $\perp$      | 55           | 0 00                   |
| 2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0.         2.0. <th< td=""><td>2.2. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.</td><td>24,</td><td>57 2.5</td><td></td><td>103</td><td>2.0</td><td>33</td><td>41</td><td>0.0</td><td>36</td><td>45</td><td></td><td>39</td><td>49</td><td>0.0</td><td>59</td><td>73</td><td>0.0</td><td>78</td><td>97</td><td>0 (</td><td></td><td>27</td><td>9 8</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.2. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 24,                  | 57 2.5     |          | 103  | 2.0 | 33  | 41     | 0.0                | 36   | 45        |       | 39    | 49    | 0.0  | 59    | 73    | 0.0  | 78       | 97   | 0 (     |              | 27           | 9 8                    |
| 2.8         74         0.0         2.0         0.0         99         0.0         0.0         99         0.0         0.0         99         85         0.0         78         1.0         0.0         99         85         0.0         0.0         99         85         0.0         78         1.0         0.0         99         85         0.0         78         1.0         0.0         99         0.0         78         1.0         0.0         99         0.0         78         1.0         0.0         99         0.0         78         1.0         0.0         99         0.0         78         1.0         0.0         99         0.0         78         1.0         0.0         99         0.0         0.0         99         0.0         0.0         99         0.0         0.0         99         0.0         99         0.0         99         0.0         99         0.0         99         0.0         99         0.0         99         0.0         99         0.0         99         0.0         99         0.0         99         0.0         99         0.0         99         0.0         99         0.0         99         0.0         99         0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.8         4.0         0.0         3.8         5.0         0.0         9.8         0.0         7.8         1.0         0.0         0.0         9.8         0.0         0.0         7.8         1.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0 <td>23.</td> <td>50 2.6</td> <td>_</td> <td>103</td> <td>2.0</td> <td>33</td> <td>44</td> <td>0.0</td> <td>36</td> <td>4 4 8 4 7</td> <td></td> <td>39</td> <td>53</td> <td>0.0</td> <td>29</td> <td>79</td> <td>0.0</td> <td>78</td> <td>101</td> <td>00</td> <td></td> <td>59 ,<br/>61 ,</td> <td>φ φ</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 23.                  | 50 2.6     | _        | 103  | 2.0 | 33  | 44     | 0.0                | 36   | 4 4 8 4 7 |       | 39    | 53    | 0.0  | 29    | 79    | 0.0  | 78       | 101  | 00      |              | 59 ,<br>61 , | φ φ                    |
| 3.0         1.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0 <td>2.0 97 0.0 12. 13. 14. 10. 10. 156 13. 0. 0. 10. 19. 19. 10. 0. 10. 19. 19. 10. 0. 10. 19. 19. 10. 0. 10. 19. 19. 10. 0. 10. 19. 19. 10. 0. 10. 19. 19. 10. 0. 10. 19. 19. 10. 0. 10. 19. 19. 10. 0. 10. 19. 19. 10. 0. 10. 19. 19. 10. 0. 10. 19. 19. 10. 0. 10. 19. 19. 10. 0. 10. 19. 19. 10. 0. 10. 19. 19. 10. 0. 10. 10. 19. 10. 10. 10. 19. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10</td> <td>216</td> <td>3.5</td> <td><math>\vdash</math></td> <td>103</td> <td>2.0</td> <td>33</td> <td>46</td> <td>0.0</td> <td>36</td> <td>50</td> <td>0.0</td> <td>39</td> <td>55</td> <td>0.0</td> <td>59</td> <td>82</td> <td>0.0</td> <td>78</td> <td>109</td> <td>0</td> <td></td> <td>64</td> <td>_ ω</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.0 97 0.0 12. 13. 14. 10. 10. 156 13. 0. 0. 10. 19. 19. 10. 0. 10. 19. 19. 10. 0. 10. 19. 19. 10. 0. 10. 19. 19. 10. 0. 10. 19. 19. 10. 0. 10. 19. 19. 10. 0. 10. 19. 19. 10. 0. 10. 19. 19. 10. 0. 10. 19. 19. 10. 0. 10. 19. 19. 10. 0. 10. 19. 19. 10. 0. 10. 19. 19. 10. 0. 10. 19. 19. 10. 0. 10. 19. 19. 10. 0. 10. 10. 19. 10. 10. 10. 19. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 216                  | 3.5        | $\vdash$ | 103  | 2.0 | 33  | 46     | 0.0                | 36   | 50        | 0.0   | 39    | 55    | 0.0  | 59    | 82    | 0.0  | 78       | 109  | 0       |              | 64           | _ ω                    |
| 3.1         6.7         6.7         6.7         6.7         6.7         6.7         6.7         6.7         6.7         6.7         6.7         6.7         6.7         6.7         6.7         6.7         6.7         6.7         6.7         6.7         6.7         6.7         6.7         6.7         6.7         6.7         6.7         6.7         6.7         6.7         6.7         6.7         6.7         6.7         6.7         6.7         6.7         6.7         6.7         6.7         6.7         6.7         6.7         6.7         6.7         6.7         6.7         6.7         6.7         6.7         6.7         6.7         6.7         6.7         6.7         6.0         6.7         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0 <td>  Name   Name  </td> <td>20.</td> <td>73 2.5</td> <td><math>\vdash</math></td> <td>103</td> <td>2.1</td> <td>33</td> <td>47</td> <td>0.0</td> <td>36</td> <td>52</td> <td>0.0</td> <td>39</td> <td>57</td> <td>0.0</td> <td>59</td> <td>85</td> <td>0.0</td> <td>78</td> <td>113</td> <td>0.0</td> <td>46</td> <td>, 99</td> <td><u>∞</u> (</td> | Name      | 20.                  | 73 2.5     | $\vdash$ | 103  | 2.1 | 33  | 47     | 0.0                | 36   | 52        | 0.0   | 39    | 57    | 0.0  | 59    | 85    | 0.0  | 78       | 113  | 0.0     | 46           | , 99         | <u>∞</u> (             |
| 3.2         6.6         1.3         2.7         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5 <td>  1</td> <td>195</td> <td>3.(</td> <td>+</td> <td>103</td> <td>2.1</td> <td>33</td> <td>4 0</td> <td>0.0</td> <td>36</td> <td>54</td> <td>0.0</td> <td>39</td> <td>29</td> <td>0.0</td> <td>20</td> <td>88</td> <td>0.0</td> <td>ω/<br/>α/</td> <td>130</td> <td>0.0</td> <td>46</td> <td>89</td> <td>φ o</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 195                  | 3.(        | +        | 103  | 2.1 | 33  | 4 0    | 0.0                | 36   | 54        | 0.0   | 39    | 29    | 0.0  | 20    | 88    | 0.0  | ω/<br>α/ | 130  | 0.0     | 46           | 89           | φ o                    |
| 3.3         6.1         0.1         2.2         3.3         6.4         0.0         3.9         6.0         0.0         78         1.28         0.0         3.9         6.0         0.0         5.9         1.0         7.0         7.0         7.0         3.0         6.0         0.0         78         1.2         0.0         78         1.2         0.0         78         1.2         0.0         78         1.2         0.0         78         1.2         0.0         78         1.2         0.0         78         1.2         0.0         78         1.2         0.0         78         1.2         0.0         78         1.2         0.0         78         1.2         0.0         78         1.2         0.0         78         1.2         0.0         2.0         1.2         0.0         3.0         1.2         0.0         3.0         1.2         0.0         3.0         1.2         0.0         3.0         1.2         0.0         3.0         1.2         0.0         3.0         1.2         0.0         3.0         1.2         0.0         3.0         1.2         0.0         3.0         1.2         0.0         3.0         1.2         0.0         3.0 <th< td=""><td>3.3</td><td>187</td><td>7 3.2</td><td>+</td><td>103</td><td>2.1</td><td>33</td><td>52</td><td>0.0</td><td>36</td><td>57</td><td>0.0</td><td>39</td><td>62</td><td>0.0</td><td>59</td><td>93</td><td>0.0</td><td>78</td><td>124</td><td>-</td><td>46 +</td><td>2 12</td><td>0 00</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 187                  | 7 3.2      | +        | 103  | 2.1 | 33  | 52     | 0.0                | 36   | 57        | 0.0   | 39    | 62    | 0.0  | 59    | 93    | 0.0  | 78       | 124  | -       | 46 +         | 2 12         | 0 00                   |
| 3.4         61         61         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62         62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.4         10.3         2.4.         3.9         10.3         2.4.         3.9         10.0         2.9.         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17.5                 | 30 3.      | $\vdash$ | 103  | 2.2 | 33  | 54     | 0.0                | 36   | 59        |       | 39    | 64    |      | 59    | 96    | 0.0  | 78       | 128  |         | 9 4 6        | 75 ,         | 00 0                   |
| 3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6 <td>3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6<td>1/2</td><td>7,5</td><td>_</td><td>10.5</td><td>2.2</td><td>252</td><td>20 22</td><td>0.0</td><td>26</td><td>61</td><td></td><td>50 6</td><td>000</td><td></td><td>20 20</td><td>200</td><td>0.0</td><td>χ α</td><td>1357</td><td></td><td>9 4</td><td>+</td><td>x 0x</td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6         3.6 <td>1/2</td> <td>7,5</td> <td>_</td> <td>10.5</td> <td>2.2</td> <td>252</td> <td>20 22</td> <td>0.0</td> <td>26</td> <td>61</td> <td></td> <td>50 6</td> <td>000</td> <td></td> <td>20 20</td> <td>200</td> <td>0.0</td> <td>χ α</td> <td>1357</td> <td></td> <td>9 4</td> <td>+</td> <td>x 0x</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1/2                  | 7,5        | _        | 10.5 | 2.2 | 252 | 20 22  | 0.0                | 26   | 61        |       | 50 6  | 000   |      | 20 20 | 200   | 0.0  | χ α      | 1357 |         | 9 4          | +            | x 0x                   |
| 3.7         68         10.2         2.3         3.5         60         0.0         39         7.6         0.0         9.0         7.6         9.0         39         7.6         0.0         39         7.6         0.0         39         7.6         0.0         39         7.6         0.0         39         7.6         0.0         39         7.6         0.0         39         7.6         0.0         39         7.6         0.0         39         7.6         0.0         39         7.6         0.0         39         1.6         0.0         39         1.6         0.0         39         1.6         0.0         39         1.6         0.0         39         1.6         0.0         39         1.6         0.0         39         1.6         0.0         39         1.6         0.0         39         1.6         0.0         39         1.0         0.0         39         8         0.0         39         1.0         39         1.0         39         8         0.0         39         1.0         0.0         39         8         0.0         39         1.0         0.0         39         8         0.0         39         1.0         0.0         39 </td <td>3.7         6.8         10.3         2.3         6.8         0.0         3.9         7.2         0.0         9.9         1.0         0.0         9.9         1.0         0.0         9.9         1.0         0.0         9.9         1.0         0.0         9.9         1.0         0.0         9.9         1.0         0.0         9.9         1.0         0.0         9.9         1.0         0.0         9.9         1.0         0.0         9.9         1.0         0.0         9.9         1.0         0.0         9.9         1.0         0.0         9.9         1.0         0.0         9.9         1.0         0.0         9.9         1.0         0.0         9.9         1.0         0.0         9.9         1.0         0.0         9.9         1.0         0.0         9.9         1.0         0.0         9.9         1.0         0.0         9.9         1.0         0.0         9.9         1.0         0.0         9.9         1.0         0.0         9.9         1.0         0.0         9.9         1.0         0.0         9.9         1.0         0.0         9.9         1.0         9.9         1.0         1.0         9.0         1.0         9.0         1.0         9.0<td>9</td><td>3.6</td><td>+</td><td>103</td><td>2.2</td><td>33</td><td>20</td><td>0.0</td><td>36</td><td>50</td><td></td><td>39</td><td>70</td><td></td><td>20</td><td>105</td><td>0.0</td><td>2 × ×</td><td>140</td><td>+</td><td>-</td><td>6/8</td><td>φ φ</td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.7         6.8         10.3         2.3         6.8         0.0         3.9         7.2         0.0         9.9         1.0         0.0         9.9         1.0         0.0         9.9         1.0         0.0         9.9         1.0         0.0         9.9         1.0         0.0         9.9         1.0         0.0         9.9         1.0         0.0         9.9         1.0         0.0         9.9         1.0         0.0         9.9         1.0         0.0         9.9         1.0         0.0         9.9         1.0         0.0         9.9         1.0         0.0         9.9         1.0         0.0         9.9         1.0         0.0         9.9         1.0         0.0         9.9         1.0         0.0         9.9         1.0         0.0         9.9         1.0         0.0         9.9         1.0         0.0         9.9         1.0         0.0         9.9         1.0         0.0         9.9         1.0         0.0         9.9         1.0         0.0         9.9         1.0         0.0         9.9         1.0         0.0         9.9         1.0         9.9         1.0         1.0         9.0         1.0         9.0         1.0         9.0 <td>9</td> <td>3.6</td> <td>+</td> <td>103</td> <td>2.2</td> <td>33</td> <td>20</td> <td>0.0</td> <td>36</td> <td>50</td> <td></td> <td>39</td> <td>70</td> <td></td> <td>20</td> <td>105</td> <td>0.0</td> <td>2 × ×</td> <td>140</td> <td>+</td> <td>-</td> <td>6/8</td> <td>φ φ</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9                    | 3.6        | +        | 103  | 2.2 | 33  | 20     | 0.0                | 36   | 50        |       | 39    | 70    |      | 20    | 105   | 0.0  | 2 × ×    | 140  | +       | -            | 6/8          | φ φ                    |
| 3.8         5.6         10.3         2.3         2.5         10.3         2.3         2.5         10.3         2.3         2.5         10.3         2.3         2.5         10.3         2.3         2.5         10.3         2.3         2.5         10.3         2.5         1.0         0.0         3.9         7.6         0.0         3.9         7.6         0.0         3.9         1.0         0.0         3.9         1.0         0.0         3.9         1.0         0.0         3.9         1.0         0.0         3.9         1.0         0.0         3.9         1.0         0.0         3.9         1.0         0.0         3.9         1.0         0.0         3.9         1.0         0.0         3.9         1.0         0.0         3.9         1.0         0.0         3.9         1.0         0.0         3.9         1.0         0.0         3.9         1.0         0.0         3.9         3.0         0.0         3.9         3.0         0.0         3.9         3.0         0.0         3.9         3.0         0.0         3.9         3.0         0.0         3.9         3.0         0.0         3.9         3.0         0.0         3.0         3.0         3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.8         5.5         10.3         2.3         3.5         6.5         0.0         3.9         7.4         0.0         5.9         1.4         0.0         5.9         1.4         0.0         5.9         1.4         0.0         5.9         1.4         0.0         5.9         1.4         0.0         5.9         1.4         0.0         7.8         1.0         0.0         4.4         4.0         5.0         1.0         2.9         1.0         0.0         5.9         1.0         0.0         5.9         1.0         0.0         5.9         1.0         0.0         5.9         1.0         0.0         5.9         1.0         0.0         5.9         1.0         0.0         5.9         1.0         0.0         5.9         1.0         0.0         5.9         1.0         0.0         5.9         1.0         0.0         5.9         1.0         0.0         5.0         1.0         0.0         5.0         1.0         0.0         5.0         9.0         0.0         5.9         1.0         0.0         5.9         1.0         0.0         5.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0 <td>152</td> <td>3.7</td> <td><math>\vdash</math></td> <td>103</td> <td>2.3</td> <td>33</td> <td>09</td> <td>0.0</td> <td>36</td> <td>99</td> <td></td> <td>39</td> <td>72</td> <td>0.0</td> <td>59</td> <td>108</td> <td>0.0</td> <td>78</td> <td>144</td> <td></td> <td><math>\mathbf{H}</math></td> <td>4</td> <td>48</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 152                  | 3.7        | $\vdash$ | 103  | 2.3 | 33  | 09     | 0.0                | 36   | 99        |       | 39    | 72    | 0.0  | 59    | 108   | 0.0  | 78       | 144  |         | $\mathbf{H}$ | 4            | 48                     |
| 4.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0         5.0 <td>4.1 5 103 2.2.3 3.2 6.2 0.0 36 77 0.0 39 87 0.0 59 177 0.0 78 150 0.0 46 4.4 4.4 4.7 103 2.4 33 6.5 0.0 36 77 0.0 39 88 0.0 39 170 0.0 78 159 0.0 46 4.4 4.4 4.4 103 2.4 33 6.5 0.0 36 77 0.0 39 88 0.0 39 170 0.0 78 159 0.0 46 4.4 4.4 4.4 103 2.4 33 6.5 0.0 36 77 0.0 39 88 0.0 39 128 0.0 78 170 0.0 46 4.4 4.4 4.4 103 2.4 33 70 0.0 36 87 70 0.0 39 88 0.0 39 128 0.0 39 128 0.0 46 4.4 4.4 4.4 103 2.4 33 70 0.0 36 82 0.0 39 88 0.0 39 128 0.0 39 128 0.0 46 6.4 120 0.0 38 128 0.0 46 4.4 4.4 4.4 103 2.5 33 75 0.0 36 82 0.0 39 88 0.0 39 128 0.0 39 128 0.0 46 6.4 120 0.0 38 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 12</td> <td>24 5</td> <td>3.8</td> <td>-</td> <td>103</td> <td>2.3</td> <td>33</td> <td>62</td> <td>0.0</td> <td>36</td> <td>68</td> <td></td> <td>39</td> <td>74</td> <td></td> <td>59</td> <td>= = =</td> <td>0.0</td> <td>2 78</td> <td>148</td> <td></td> <td>+</td> <td>(O)</td> <td>∞ 0</td>                                 | 4.1 5 103 2.2.3 3.2 6.2 0.0 36 77 0.0 39 87 0.0 59 177 0.0 78 150 0.0 46 4.4 4.4 4.7 103 2.4 33 6.5 0.0 36 77 0.0 39 88 0.0 39 170 0.0 78 159 0.0 46 4.4 4.4 4.4 103 2.4 33 6.5 0.0 36 77 0.0 39 88 0.0 39 170 0.0 78 159 0.0 46 4.4 4.4 4.4 103 2.4 33 6.5 0.0 36 77 0.0 39 88 0.0 39 128 0.0 78 170 0.0 46 4.4 4.4 4.4 103 2.4 33 70 0.0 36 87 70 0.0 39 88 0.0 39 128 0.0 39 128 0.0 46 4.4 4.4 4.4 103 2.4 33 70 0.0 36 82 0.0 39 88 0.0 39 128 0.0 39 128 0.0 46 6.4 120 0.0 38 128 0.0 46 4.4 4.4 4.4 103 2.5 33 75 0.0 36 82 0.0 39 88 0.0 39 128 0.0 39 128 0.0 46 6.4 120 0.0 38 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 128 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 129 0.0 39 12 | 24 5                 | 3.8        | -        | 103  | 2.3 | 33  | 62     | 0.0                | 36   | 68        |       | 39    | 74    |      | 59    | = = = | 0.0  | 2 78     | 148  |         | +            | (O)          | ∞ 0                    |
| 4.1         51         10.3         2.4         3.3         67         0.0         36         7.5         0.0         39         8.0         0.0         59         12.0         0.0         7.8         0.0         4.4         4.1         4.1         4.1         4.1         4.1         4.1         4.2         10.3         2.4         3.3         6.0         36         7.0         0.0         59         12.0         0.0         59         12.0         0.0         59         12.0         0.0         59         12.0         0.0         59         12.0         0.0         59         12.0         0.0         59         12.0         0.0         59         12.0         0.0         59         12.0         0.0         59         12.0         0.0         59         12.0         0.0         59         12.0         0.0         59         12.0         0.0         59         12.0         0.0         59         12.0         0.0         59         12.0         0.0         59         12.0         0.0         59         12.0         0.0         59         12.0         0.0         59         12.0         0.0         59         12.0         0.0         59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4-11 51 103 2-4 33 67 0.0 36 73 0.0 36 73 0.0 39 80 0.0 0.9 91 120 0.0 78 159 0.0 0.4 44.4 44. 103 2-4 33 68 0.0 0.3 67 75 0.0 39 84 0.0 59 122 0.0 78 173 0.0 0.4 44.4 44. 103 2-4 33 70 0.0 36 75 0.0 39 84 0.0 59 122 0.0 78 173 0.0 0.4 45.4 44 17 103 2-5 33 70 0.0 36 75 0.0 39 88 0.0 59 131 0.0 78 173 0.0 0.4 45.4 44 17 103 2-5 33 70 0.0 36 82 0.0 39 81 0.0 59 131 0.0 78 175 0.0 44.4 44.4 44 17 103 2-5 33 70 0.0 36 82 0.0 39 81 0.0 59 131 0.0 78 175 0.0 44.4 44.8 44 17 103 2-5 33 70 0.0 36 82 0.0 39 91 0.0 59 131 0.0 78 175 0.0 44.8 48 130 2.5 33 78 0.0 36 82 0.0 39 91 0.0 59 131 0.0 78 175 0.0 44.8 48 130 2.5 33 78 0.0 36 82 0.0 39 91 0.0 59 144 0.0 78 186 0.0 44.8 48 130 2.5 33 88 0.0 36 82 0.0 39 91 0.0 59 144 0.0 78 149 0.0 44.8 48 130 2.5 33 88 0.0 36 82 0.0 39 91 0.0 59 144 0.0 78 149 0.0 44.8 48 130 2.5 33 88 0.0 36 82 0.0 39 91 0.0 59 144 0.0 78 149 0.0 44 148 148 149 149 149 149 149 149 149 149 149 149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14                   | 33 4.0     | +        | 103  | 2.3 | 33  | 65     | 0.0                | 36   | 71        |       | 39    | 78    |      | 29    | 117   | 0.0  | 0 / 8/   | 155  |         | -            | +            | 0 4 0 0 0 0            |
| 4.2         50         0.0         2.4         3.5         0.0         3.9         8.2         0.0         5.9         1.2         0.0         3.9         8.2         0.0         5.9         1.2         0.0         7.0         7.0         4.2         4.0         0.0         3.9         8.6         0.0         5.9         1.2         0.0         7.0         7.0         4.0         4.0         4.0         9.0         0.0         5.0         1.0         7.0         7.0         7.0         9.0         0.0         5.0         1.0         7.0         7.0         7.0         7.0         9.0         0.0         5.0         1.0         7.0         7.0         7.0         9.0         0.0         5.0         1.0         7.0         7.0         9.0         0.0         5.0         1.0         7.0         9.0         0.0         5.0         1.0         9.0         0.0         5.0         1.0         9.0         0.0         5.0         9.0         0.0         5.0         9.0         0.0         5.0         9.0         0.0         5.0         9.0         0.0         5.0         1.0         9.0         0.0         5.0         1.0         9.0         0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.2 50 103 2.4 33 68 0.0 36 77 0.0 39 8 77 0.0 59 82 0.0 59 125 0.0 78 163 0.0 44 4.4 4.4 103 2.4 33 77 0.0 0.0 36 77 0.0 39 84 0.0 0 59 125 0.0 78 163 0.0 0 44 4.4 4.4 103 2.4 33 77 0.0 0.0 36 70 0.0 39 84 0.0 0 59 125 0.0 78 170 0.0 44 4.4 4.4 103 2.4 33 77 0.0 0.0 36 84 0.0 39 84 0.0 59 125 0.0 78 170 0.0 44 4.4 4.4 103 2.2 33 775 0.0 36 84 0.0 39 84 0.0 59 134 0.0 79 181 0.0 0.0 44 4.4 103 2.2 33 775 0.0 36 84 0.0 39 93 0.0 59 140 0.0 79 181 0.0 0.0 44 4.4 103 2.2 33 775 0.0 36 84 0.0 39 93 0.0 59 140 0.0 79 181 0.0 0.0 44 4.5 103 2.2 33 775 0.0 36 84 0.0 39 93 0.0 59 140 0.0 79 181 0.0 0.0 46 5.2 10 0.0 36 84 0.0 39 0.0 0.0 59 140 0.0 79 181 0.0 0.0 46 5.2 10 0.0 36 84 0.0 39 0.0 0.0 59 140 0.0 59 140 0.0 0.0 46 5.2 10 0.0 0.0 46 5.2 10 0.0 36 89 0.0 0.0 39 0.0 0.0 59 140 0.0 0.0 46 5.2 10 0.0 0.0 46 5.2 10 0.0 36 89 0.0 0.0 39 0.0 0.0 59 140 0.0 0.0 46 5.2 10 0.0 0.0 46 5.2 10 0.0 36 89 0.0 0.0 39 0.0 0.0 59 140 0.0 0.0 46 5.2 10 0.0 0.0 46 5.2 10 0.0 36 99 0.0 0.0 59 140 0.0 0.0 46 5.2 10 0.0 0.0 46 5.2 10 0.0 0.0 46 5.2 10 0.0 0.0 46 5.2 10 0.0 0.0 46 5.2 10 0.0 0.0 46 5.2 10 0.0 0.0 46 5.2 10 0.0 0.0 59 140 0.0 0.0 59 140 0.0 0.0 0.0 46 5.2 10 0.0 0.0 46 5.2 10 0.0 0.0 59 140 0.0 0.0 59 140 0.0 0.0 59 140 0.0 0.0 59 140 0.0 0.0 59 140 0.0 0.0 59 140 0.0 0.0 59 140 0.0 0.0 59 140 0.0 0.0 59 140 0.0 0.0 59 140 0.0 0.0 59 140 0.0 0.0 59 140 0.0 0.0 59 140 0.0 0.0 59 140 0.0 0.0 59 140 0.0 0.0 59 140 0.0 0.0 59 140 0.0 0.0 59 140 0.0 0.0 59 140 0.0 0.0 59 140 0.0 0.0 59 140 0.0 0.0 59 140 0.0 0.0 59 140 0.0 0.0 59 140 0.0 0.0 59 140 0.0 0.0 59 140 0.0 0.0 59 140 0.0 0.0 59 140 0.0 0.0 59 140 0.0 0.0 59 140 0.0 0.0 59 140 0.0 0.0 59 140 0.0 0.0 59 140 0.0 0.0 59 140 0.0 0.0 59 140 0.0 0.0 59 140 0.0 0.0 59 140 0.0 0.0 59 140 0.0 0.0 59 140 0.0 0.0 59 140 0.0 0.0 59 140 0.0 0.0 59 140 0.0 0.0 59 140 0.0 0.0 59 140 0.0 0.0 59 140 0.0 0.0 59 140 0.0 0.0 59 140 0.0 0.0 59 140 0.0 0.0 59 140 0.0 0.0 59 140 0.0 0.0 59 140 0.0 0.0 59 140 0.0 0.0 59 140 0.0 0.0 59 140 0.0 0.0 59 140 0.0 0.0 59 140 0.0 0.0 59 140 0. | 13,6                 | 59 4.      | $\vdash$ | 103  | 2.4 | 33  | 67     | 0.0                | 36   | 73        |       | 39    | 80    |      | 59    | 120   | 0.0  | 78       | 159  |         |              | 2            | <u>∞</u>               |
| 4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7.         4.7. <th< td=""><td>4.5 4 7 102 2.5 33 7 7 10 0.0 36 87 0.0 39 88 0.0 59 134 0.0 78 171 0.0 46 46 47 103 2.5 33 7 7 10 0.0 36 80 0.0 39 88 0.0 59 134 0.0 78 171 0.0 0 46 46 47 103 2.5 33 7 7 10 0.0 36 80 0.0 39 93 0.0 59 134 0.0 78 175 0.0 46 46 47 103 2.5 33 7 7 0.0 36 80 0.0 39 93 0.0 59 134 0.0 78 180 0.0 46 47 48 43 103 2.6 33 80 0.0 36 80 0.0 39 93 0.0 59 143 0.0 78 180 0.0 46 46 51 103 2.6 33 80 0.0 36 80 0.0 39 93 0.0 59 143 0.0 78 180 0.0 46 46 51 103 2.6 33 80 0.0 36 80 0.0 39 93 0.0 59 143 0.0 78 180 0.0 46 51 103 2.6 33 80 0.0 36 80 0.0 39 93 0.0 59 143 0.0 78 180 0.0 46 51 103 2.6 33 80 0.0 36 80 0.0 39 93 0.0 59 143 0.0 78 180 0.0 46 51 103 2.6 33 80 0.0 36 80 0.0 39 93 0.0 59 143 0.0 78 180 0.0 46 51 103 2.6 33 80 0.0 36 80 0.0 39 93 0.0 59 143 0.0 78 180 0.0 46 51 103 2.6 33 80 0.0 36 80 0.0 39 93 0.0 59 143 0.0 78 180 0.0 46 51 103 2.6 33 80 0.0 36 80 0.0 39 93 0.0 59 143 0.0 78 200 0.0 46 51 103 2.6 33 80 0.0 36 90 0.0 39 103 0.0 59 143 0.0 36 143 0.0 46 51 103 2.6 33 80 0.0 36 90 0.0 39 103 0.0 59 143 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 1</td><td>13.</td><td>7 4.</td><td>_</td><td>103</td><td>2.4</td><td>33</td><td>68</td><td>0.0</td><td>36</td><td>75</td><td></td><td>39</td><td>82</td><td></td><td>20</td><td>122</td><td>0.0</td><td>78</td><td>163</td><td>+</td><td>+</td><td>95</td><td>φ o</td></th<>           | 4.5 4 7 102 2.5 33 7 7 10 0.0 36 87 0.0 39 88 0.0 59 134 0.0 78 171 0.0 46 46 47 103 2.5 33 7 7 10 0.0 36 80 0.0 39 88 0.0 59 134 0.0 78 171 0.0 0 46 46 47 103 2.5 33 7 7 10 0.0 36 80 0.0 39 93 0.0 59 134 0.0 78 175 0.0 46 46 47 103 2.5 33 7 7 0.0 36 80 0.0 39 93 0.0 59 134 0.0 78 180 0.0 46 47 48 43 103 2.6 33 80 0.0 36 80 0.0 39 93 0.0 59 143 0.0 78 180 0.0 46 46 51 103 2.6 33 80 0.0 36 80 0.0 39 93 0.0 59 143 0.0 78 180 0.0 46 46 51 103 2.6 33 80 0.0 36 80 0.0 39 93 0.0 59 143 0.0 78 180 0.0 46 51 103 2.6 33 80 0.0 36 80 0.0 39 93 0.0 59 143 0.0 78 180 0.0 46 51 103 2.6 33 80 0.0 36 80 0.0 39 93 0.0 59 143 0.0 78 180 0.0 46 51 103 2.6 33 80 0.0 36 80 0.0 39 93 0.0 59 143 0.0 78 180 0.0 46 51 103 2.6 33 80 0.0 36 80 0.0 39 93 0.0 59 143 0.0 78 180 0.0 46 51 103 2.6 33 80 0.0 36 80 0.0 39 93 0.0 59 143 0.0 78 180 0.0 46 51 103 2.6 33 80 0.0 36 80 0.0 39 93 0.0 59 143 0.0 78 200 0.0 46 51 103 2.6 33 80 0.0 36 90 0.0 39 103 0.0 59 143 0.0 36 143 0.0 46 51 103 2.6 33 80 0.0 36 90 0.0 39 103 0.0 59 143 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 144 0.0 36 1 | 13.                  | 7 4.       | _        | 103  | 2.4 | 33  | 68     | 0.0                | 36   | 75        |       | 39    | 82    |      | 20    | 122   | 0.0  | 78       | 163  | +       | +            | 95           | φ o                    |
| 4.5         4.6         10.3         2.5         3.3         7.3         0.0         3.6         8.0         0.0         39         11.0         0.0         19.0         11.0         0.0         19.0         11.0         0.0         19.0         11.0         0.0         19.0         11.0         0.0         19.0         10.0         19.0         11.0         0.0         19.0         10.0         19.0         10.0         19.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.5 46 103 2.5 33 73 0.0 36 80 0.0 39 88 0.0 59 131 0.0 76 176 179 0.0 44 4.8 4.3 103 2.5 33 78 0.0 36 84 0.0 39 91 0.0 59 137 0.0 78 182 0.0 0.4 46 4.8 4.3 103 2.5 33 76 0.0 36 84 0.0 39 91 0.0 59 137 0.0 78 182 0.0 0.4 46 4.8 4.3 103 2.5 33 76 0.0 36 89 0.0 39 91 0.0 59 144 0.0 78 182 0.0 0.4 46 5.0 42 103 2.5 33 80 0.0 36 89 0.0 39 91 0.0 59 144 0.0 78 182 0.0 0.4 46 5.1 4.1 103 2.5 33 84 0.0 36 89 0.0 39 10 0.0 59 144 0.0 78 182 0.0 0.4 46 5.2 40 103 2.2 33 84 0.0 36 89 0.0 39 10 0.0 59 151 0.0 78 120 0.0 46 5.2 40 103 2.2 33 88 0.0 36 89 0.0 39 10 0.0 59 151 0.0 78 120 0.0 46 5.2 40 103 2.2 33 89 0.0 36 91 0.0 39 10 0.0 59 151 0.0 78 120 0.0 46 5.2 34 103 2.2 33 89 0.0 36 91 0.0 39 10 0.0 59 151 0.0 78 120 0.0 46 5.2 34 103 2.2 33 89 0.0 36 10 0.0 36 10 0.0 59 110 0.0 59 151 0.0 46 5.2 35 103 2.2 33 91 0.0 36 100 0.0 39 113 0.0 59 160 0.0 78 121 0.0 46 5.2 35 103 2.2 33 91 0.0 36 100 0.0 39 113 0.0 59 160 0.0 78 121 0.0 46 5.2 35 103 2.2 33 91 0.0 36 100 0.0 39 113 0.0 59 160 0.0 78 121 0.0 46 5.2 35 103 2.2 33 91 0.0 36 100 0.0 39 113 0.0 59 160 0.0 78 121 0.0 46 5.2 35 103 2.2 33 91 0.0 36 100 0.0 39 113 0.0 59 180 0.0 78 121 0.0 46 5.2 35 103 2.2 33 91 0.0 36 10 0.0 39 114 0.0 59 180 0.0 78 121 0.0 46 5.2 35 103 3.2 35 113 2.3 36 113 0.0 39 114 0.0 59 180 0.0 78 121 0.0 46 5.2 35 113 3.3 37 122 2.3 56 113 0.0 39 114 0.0 59 189 0.0 78 121 0.0 46 5.2 35 113 3.3 37 122 2.3 56 113 0.0 39 144 0.0 59 120 0.0 59 120 0.0 46 5.2 35 113 3.3 37 123 2.3 56 113 0.0 39 144 0.0 59 121 0.0 78 121 0.0 46 5.2 35 113 3.3 37 123 2.3 56 130 0.0 39 144 0.0 59 121 0.0 78 121 0.0 44 5.2 35 133 3.3 44 0.0 36 134 0.0 39 144 0.0 59 121 0.0 49 121 0.0 46 5.2 35 133 3.3 37 123 2.3 56 130 0.0 39 144 0.0 59 121 0.0 49 121 0.0 49 5.2 35 133 3.4 37 123 2.3 56 130 0.0 39 144 0.0 59 121 0.0 49 121 0.0 49 5.2 36 133 3.4 37 123 2.3 56 130 0.0 39 144 0.0 59 121 0.0 59 121 0.0 49 5.2 36 133 3.4 37 133 2.5 58 130 0.0 39 144 0.0 59 121 0.0 59 121 0.0 49 5.2 36 133 3.4 37 132 2.3 51 13 0.0 39 144 0.0 59 121 0.0 59 121 0.0 49 5.2 36 138 3.8 37 1 | 12.                  | 7,4 4.7    | +        | 103  | 2.4 | 33  | 12     | 0.0                | 36   | 79        |       | 39    | 86    | 0.0  | 29    | 128   | 0.0  | 0 / 0    | 171  |         | +            | , 001        | 0 00                   |
| 4.7. 44, 10.3 2.5 3.3 75 0.0 36 84 0.0 39 91 0.0 59 137 0.0 78 179 0.0 4.4 1.4 10.3 2.5 3.3 75 0.0 36 84 0.0 39 91 0.0 59 137 0.0 78 182 0.0 0.0 4.6 4.1 10.3 2.6 3.3 176 0.0 36 84 0.0 39 95 0.0 59 144 0.0 70 78 180 0.0 0.0 5.0 144 0.0 0.0 78 180 0.0 0.0 5.0 144 0.0 0.0 78 180 0.0 0.0 5.0 144 0.0 0.0 78 180 0.0 0.0 5.0 144 0.0 0.0 78 180 0.0 0.0 5.0 144 0.0 0.0 78 180 0.0 0.0 5.0 144 0.0 0.0 78 180 0.0 0.0 5.0 144 0.0 0.0 78 180 0.0 0.0 5.0 144 0.0 0.0 78 180 0.0 0.0 5.0 144 0.0 0.0 1.0 140 0.0 1.0 140 0.0 0.0 144 0.0 0.0 1.0 140 0.0 1.0 140 0.0 1.0 140 0.0 1.0 140 0.0 1.0 140 0.0 1.0 140 0.0 1.0 140 0.0 1.0 140 0.0 1.0 140 0.0 1.0 140 0.0 1.0 140 0.0 1.0 140 0.0 1.0 140 0.0 1.0 140 0.0 1.0 140 0.0 1.0 140 0.0 1.0 140 0.0 1.0 140 0.0 1.0 140 0.0 1.0 140 0.0 1.0 140 0.0 1.0 140 0.0 1.0 140 0.0 1.0 140 0.0 1.0 140 0.0 1.0 140 0.0 1.0 140 0.0 1.0 140 0.0 1.0 140 0.0 1.0 140 0.0 1.0 140 0.0 1.0 140 0.0 1.0 140 0.0 1.0 140 0.0 1.0 140 0.0 1.0 140 0.0 1.0 140 0.0 1.0 140 0.0 1.0 140 0.0 1.0 140 0.0 1.0 140 0.0 1.0 140 0.0 1.0 140 0.0 1.0 140 0.0 1.0 140 0.0 1.0 140 0.0 1.0 140 0.0 1.0 140 0.0 1.0 140 0.0 1.0 140 0.0 1.0 140 0.0 1.0 140 0.0 1.0 140 0.0 1.0 140 0.0 1.0 140 0.0 1.0 140 0.0 1.0 140 0.0 1.0 140 0.0 1.0 140 0.0 1.0 140 0.0 1.0 140 0.0 1.0 140 0.0 1.0 140 0.0 1.0 140 0.0 1.0 140 0.0 1.0 140 0.0 1.0 140 0.0 1.0 140 0.0 1.0 140 0.0 1.0 140 0.0 1.0 140 0.0 1.0 140 0.0 1.0 140 0.0 1.0 140 0.0 1.0 140 0.0 1.0 140 0.0 1.0 140 0.0 1.0 140 0.0 140 0.0 140 0.0 140 0.0 140 0.0 140 0.0 140 0.0 140 0.0 140 0.0 140 0.0 140 0.0 140 0.0 140 0.0 140 0.0 140 0.0 140 0.0 140 0.0 140 0.0 140 0.0 140 0.0 140 0.0 140 0.0 140 0.0 140 0.0 140 0.0 140 0.0 140 0.0 140 0.0 140 0.0 140 0.0 140 0.0 140 0.0 140 0.0 140 0.0 140 0.0 140 0.0 140 0.0 140 0.0 140 0.0 140 0.0 140 0.0 140 0.0 140 0.0 140 0.0 140 0.0 140 0.0 140 0.0 140 0.0 140 0.0 140 0.0 140 0.0 140 0.0 140 0.0 140 0.0 140 0.0 140 0.0 140 0.0 140 0.0 140 0.0 140 0.0 140 0.0 140 0.0 140 0.0 140 0.0 140 0.0 140 0.0 140 0.0 140 0.0 140 0.0 140 0.0 140 0.0 140 0.0 140 0.0 140 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.7. 44 103 2.5 33 75 0.0 36 84 0.0 39 91 0.0 0.0 59 144 0.0 78 182 0.0 44 4.7 44 103 2.5 33 75 0.0 36 84 0.0 39 91 0.0 0.0 59 144 0.0 78 182 0.0 44 4.7 44 103 2.5 33 76 0.0 36 84 0.0 39 91 0.0 59 143 0.0 78 182 0.0 44 4.5 4.3 103 2.5 33 76 0.0 36 84 0.0 39 91 0.0 59 143 0.0 78 189 0.0 44 4.5 4.3 103 2.5 33 80 0.0 36 89 0.0 39 91 0.0 59 143 0.0 78 189 0.0 44 4.5 5.1 4.3 103 2.5 33 80 0.0 36 89 0.0 39 91 0.0 59 143 0.0 78 189 0.0 44 4.5 5.1 4.3 103 2.5 33 80 0.0 36 89 0.0 39 91 0.0 59 143 0.0 78 189 0.0 44 4.5 5.1 4.1 103 2.5 33 84 0.0 36 89 0.0 39 103 0.0 59 144 0.0 78 120 0.0 44 5.2 4.3 103 2.7 33 88 0.0 36 89 0.0 39 103 0.0 59 144 0.0 78 120 0.0 44 5.2 4.3 103 2.7 33 88 0.0 36 89 0.0 39 103 0.0 59 144 0.0 78 120 0.0 44 5.2 4.3 103 2.8 33 91 0.0 36 90 0.0 39 103 0.0 59 144 0.0 78 120 0.0 44 5.2 4.3 103 2.8 33 91 0.0 36 90 0.0 39 110 0.0 59 144 0.0 78 120 0.0 44 5.2 4.3 103 2.8 33 91 0.0 36 90 0.0 39 111 0.0 59 142 0.0 78 120 0.0 44 5.2 5.2 31 103 2.8 33 91 0.0 36 103 0.0 39 111 0.0 59 142 0.0 78 120 0.0 44 5.2 5.2 31 103 2.9 33 94 0.0 36 103 0.0 39 112 0.0 59 142 0.0 36 103 0.0 59 142 0.0 39 142 0.0 59 142 0.0 39 142 0.0 59 142 0.0 34 5.2 5.2 31 103 2.3 34 103 2.3 34 103 2.3 34 103 2.3 34 103 2.3 34 103 2.3 34 103 2.3 34 103 2.3 34 103 2.3 34 103 2.3 34 103 2.3 34 103 2.3 34 103 2.3 34 103 2.3 34 103 2.3 34 103 2.3 34 103 2.3 34 103 2.3 34 103 2.3 34 103 2.3 34 103 2.3 34 103 2.3 34 103 2.3 34 103 2.3 34 103 2.3 34 103 2.3 34 103 2.3 34 103 2.3 34 103 2.3 34 103 2.3 34 103 2.3 34 103 2.3 34 103 2.3 34 103 2.3 34 103 2.3 34 103 2.3 34 103 2.3 34 103 2.3 34 103 2.3 34 103 2.3 34 103 2.3 34 103 2.3 34 103 2.3 34 103 2.3 34 103 2.3 34 103 2.3 34 103 2.3 34 103 2.3 34 103 2.3 34 103 2.3 34 103 2.3 34 103 2.3 34 103 2.3 34 103 2.3 34 103 2.3 34 103 2.3 34 103 2.3 34 103 2.3 34 103 2.3 34 103 2.3 34 103 2.3 34 103 2.3 34 103 2.3 34 103 2.3 34 103 2.3 34 103 2.3 34 103 2.3 34 103 2.3 34 103 2.3 34 103 2.3 34 103 2.3 34 103 2.3 34 103 2.3 34 103 2.3 34 103 2.3 34 103 2.3 34 103 2.3 34 103 2.3 34 103 2.3 34 103 2.3 34 1 | 121                  | 17 4.5     | Н        | 103  | 2.5 | 33  | 73     | 0.0                | 36   | 80        | 0.0   | 39    | 88    | 0.0  | 59    | 131   | 0.0  | 78       | 175  |         |              | 102          | <u>∞</u>               |
| 4.8         4.3         103         2.6         3.7         8.0         3.6         8.6         0.0         3.9         9.3         0.0         5.9         4.0         0.0         5.0         4.0         4.0         5.0         5.0         4.0         5.0         5.0         4.0         0.0         5.0         4.0         0.0         5.0         4.0         0.0         5.0         4.0         0.0         5.0         4.0         0.0         5.0         4.0         0.0         5.0         4.0         0.0         5.0         4.0         0.0         5.0         4.0         0.0         5.0         4.0         0.0         5.0         4.0         0.0         5.0         4.0         0.0         5.0         4.0         0.0         5.0         4.0         0.0         5.0         4.0         0.0         5.0         4.0         0.0         5.0         4.0         0.0         5.0         9.0         0.0         5.0         9.0         0.0         5.0         9.0         0.0         5.0         9.0         0.0         5.0         9.0         0.0         5.0         9.0         0.0         5.0         9.0         0.0         5.0         9.0         0.0 <td>4.8 43 103 2.5 3.5 78 0.0 3.6 87 0.0 39 93 0.0 59 143 0.0 0.0 78 186 0.0 46 45 173 0.3 2.6 3.3 80 0.0 3.6 87 0.0 39 95 0.0 59 143 0.0 0.0 78 180 0.0 46 45 1.0 3 0.2 2.6 3.3 80 0.0 3.6 87 0.0 39 95 0.0 59 143 0.0 78 180 0.0 46 55.4 40 103 2.2 3.3 84 0.0 3.6 89 0.0 39 100 0.0 59 143 0.0 78 180 0.0 46 55.4 40 103 2.2 3.3 88 0.0 3.6 89 0.0 39 100 0.0 59 143 0.0 78 180 0.0 46 55.4 39 103 2.7 33 88 0.0 3.6 89 0.0 39 100 0.0 59 143 0.0 78 180 0.0 46 55.4 39 103 2.7 33 88 0.0 3.6 89 0.0 39 100 0.0 59 143 0.0 78 180 0.0 46 55.4 39 103 2.7 33 88 0.0 3.6 89 0.0 39 100 0.0 59 143 0.0 78 180 0.0 46 55.4 39 103 2.7 33 88 0.0 3.6 96 0.0 39 100 0.0 59 143 0.0 78 180 0.0 46 55.4 39 103 2.7 33 88 0.0 3.6 96 0.0 39 100 0.0 59 140 0.0 78 180 0.0 46 55.4 39 103 2.7 33 88 0.0 3.6 96 0.0 39 113 0.0 59 140 0.0 78 180 0.0 46 55.4 39 103 2.7 33 88 0.0 3.6 96 0.0 39 113 0.0 59 140 0.0 78 180 0.0 46 55.4 39 103 2.9 33 94 0.0 3.6 103 0.0 39 113 0.0 59 140 0.0 78 180 0.0 46 55.4 39 103 2.9 33 94 0.0 3.6 103 0.0 39 113 0.0 59 140 0.0 78 129 0.0 46 55.4 39 103 0.0 39 113 0.0 59 140 0.0 78 129 0.0 46 55.4 39 103 0.0 39 113 0.0 59 140 0.0 78 129 0.0 46 55.4 39 103 0.0 39 113 0.0 59 140 0.0 78 129 0.0 46 55.4 39 103 0.0 39 113 0.0 59 140 0.0 78 129 0.0 46 55.4 39 103 0.0 39 113 0.0 59 140 0.0 78 129 0.0 46 55.4 39 113 0.0 59 140 0.0 78 129 0.0 46 55.4 39 113 0.0 59 140 0.0 59 140 0.0 78 129 0.0 46 55.4 39 113 0.0 59 140 0.0 59 140 0.0 78 129 0.0 46 55.4 39 113 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.</td> <td>116</td> <td>3. F</td> <td>+</td> <td>103</td> <td>2.5</td> <td>255</td> <td>75</td> <td>0.0</td> <td>36</td> <td>82</td> <td>0.0</td> <td>259</td> <td>8 2</td> <td>0.00</td> <td>700</td> <td>13.4</td> <td>0.0</td> <td>χ α</td> <td>17.9</td> <td>-</td> <td>+</td> <td>104</td> <td>φ σ</td>                      | 4.8 43 103 2.5 3.5 78 0.0 3.6 87 0.0 39 93 0.0 59 143 0.0 0.0 78 186 0.0 46 45 173 0.3 2.6 3.3 80 0.0 3.6 87 0.0 39 95 0.0 59 143 0.0 0.0 78 180 0.0 46 45 1.0 3 0.2 2.6 3.3 80 0.0 3.6 87 0.0 39 95 0.0 59 143 0.0 78 180 0.0 46 55.4 40 103 2.2 3.3 84 0.0 3.6 89 0.0 39 100 0.0 59 143 0.0 78 180 0.0 46 55.4 40 103 2.2 3.3 88 0.0 3.6 89 0.0 39 100 0.0 59 143 0.0 78 180 0.0 46 55.4 39 103 2.7 33 88 0.0 3.6 89 0.0 39 100 0.0 59 143 0.0 78 180 0.0 46 55.4 39 103 2.7 33 88 0.0 3.6 89 0.0 39 100 0.0 59 143 0.0 78 180 0.0 46 55.4 39 103 2.7 33 88 0.0 3.6 89 0.0 39 100 0.0 59 143 0.0 78 180 0.0 46 55.4 39 103 2.7 33 88 0.0 3.6 96 0.0 39 100 0.0 59 143 0.0 78 180 0.0 46 55.4 39 103 2.7 33 88 0.0 3.6 96 0.0 39 100 0.0 59 140 0.0 78 180 0.0 46 55.4 39 103 2.7 33 88 0.0 3.6 96 0.0 39 113 0.0 59 140 0.0 78 180 0.0 46 55.4 39 103 2.7 33 88 0.0 3.6 96 0.0 39 113 0.0 59 140 0.0 78 180 0.0 46 55.4 39 103 2.9 33 94 0.0 3.6 103 0.0 39 113 0.0 59 140 0.0 78 180 0.0 46 55.4 39 103 2.9 33 94 0.0 3.6 103 0.0 39 113 0.0 59 140 0.0 78 129 0.0 46 55.4 39 103 0.0 39 113 0.0 59 140 0.0 78 129 0.0 46 55.4 39 103 0.0 39 113 0.0 59 140 0.0 78 129 0.0 46 55.4 39 103 0.0 39 113 0.0 59 140 0.0 78 129 0.0 46 55.4 39 103 0.0 39 113 0.0 59 140 0.0 78 129 0.0 46 55.4 39 103 0.0 39 113 0.0 59 140 0.0 78 129 0.0 46 55.4 39 113 0.0 59 140 0.0 78 129 0.0 46 55.4 39 113 0.0 59 140 0.0 59 140 0.0 78 129 0.0 46 55.4 39 113 0.0 59 140 0.0 59 140 0.0 78 129 0.0 46 55.4 39 113 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0.0 59 140 0. | 116                  | 3. F       | +        | 103  | 2.5 | 255 | 75     | 0.0                | 36   | 82        | 0.0   | 259   | 8 2   | 0.00 | 700   | 13.4  | 0.0  | χ α      | 17.9 | -       | +            | 104          | φ σ                    |
| 5.0         4.3         1.0         2.6         3.3         8.0         0.0         3.6         8.0         0.0         3.6         8.0         0.0         3.6         8.0         0.0         3.6         8.0         0.0         3.6         8.0         0.0         3.6         8.0         0.0         3.6         8.0         0.0         3.6         9.0         0.0         3.6         1.0         0.0         3.6         1.0         0.0         3.6         1.0         0.0         3.6         1.0         0.0         3.6         1.0         0.0         3.6         1.0         0.0         3.6         1.0         0.0         3.6         1.0         0.0         3.6         1.0         0.0         3.6         1.0         0.0         3.6         1.0         0.0         3.6         1.0         0.0         3.6         1.0         0.0         3.6         1.0         0.0         3.6         1.0         0.0         3.6         1.0         0.0         3.6         1.0         0.0         3.6         1.0         0.0         3.6         1.0         0.0         3.6         1.0         0.0         3.6         1.0         0.0         3.6         1.0         0.0 <td>5.0         4.9         4.2         4.3         4.3         4.9         4.9         4.9         4.9         4.9         4.9         4.9         4.9         4.9         4.9         4.9         4.9         4.9         4.9         4.9         4.9         4.9         0.0         36         9.9         0.0         39         1.0         5.9         14.9         0.0         4.9         1.0         4.9         1.0         4.9         1.0         4.9         1.0         4.9         1.0         4.9         1.0         4.9         1.0         4.9         1.0         4.0         4.0         4.0         4.0         1.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0</td> <td>10,</td> <td>3.4 4.8</td> <td>+</td> <td>103</td> <td>2.6</td> <td>33</td> <td>78</td> <td></td> <td>36</td> <td>86</td> <td>0.0</td> <td>39</td> <td>93</td> <td>0.0</td> <td>29</td> <td>140</td> <td>0.0</td> <td>78</td> <td>186</td> <td></td> <td>+ +</td> <td>109</td> <td>0 00</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.0         4.9         4.2         4.3         4.3         4.9         4.9         4.9         4.9         4.9         4.9         4.9         4.9         4.9         4.9         4.9         4.9         4.9         4.9         4.9         4.9         4.9         0.0         36         9.9         0.0         39         1.0         5.9         14.9         0.0         4.9         1.0         4.9         1.0         4.9         1.0         4.9         1.0         4.9         1.0         4.9         1.0         4.9         1.0         4.9         1.0         4.0         4.0         4.0         4.0         1.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10,                  | 3.4 4.8    | +        | 103  | 2.6 | 33  | 78     |                    | 36   | 86        | 0.0   | 39    | 93    | 0.0  | 29    | 140   | 0.0  | 78       | 186  |         | + +          | 109          | 0 00                   |
| 5.7         4.7         5.0         5.2         5.3         8.3         5.0         5.0         5.0         5.0         5.0         1.4         0.0         5.0         1.4         0.0         5.0         1.4         0.0         5.0         1.0         5.0         1.0         0.0         5.0         1.0         5.0         1.0         0.0         5.0         1.0         0.0         5.0         1.0         0.0         5.0         1.0         0.0         5.0         1.0         0.0         5.0         1.0         0.0         5.0         1.0         0.0         5.0         1.0         0.0         5.0         1.0         0.0         5.0         1.0         0.0         5.0         1.0         0.0         5.0         1.0         0.0         5.0         1.0         0.0         5.0         1.0         0.0         5.0         1.0         0.0         5.0         1.0         0.0         5.0         1.0         0.0         3.0         1.0         0.0         3.0         1.0         0.0         3.0         1.0         0.0         3.0         1.0         0.0         3.0         1.0         0.0         3.0         1.0         0.0         3.0         1.0 <td>5.7.         4.7.         6.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         <th< td=""><td>10(</td><td>55</td><td>_</td><td>103</td><td>2.6</td><td>33</td><td>8 2</td><td>0.0</td><td>36</td><td>87</td><td>0.0</td><td>39</td><td>95</td><td>0.0</td><td>59</td><td>143</td><td>0.0</td><td>8 2</td><td>190</td><td>0.0</td><td>46</td><td>11 7</td><td>φ α</td></th<></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.7.         4.7.         6.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7.         5.7. <th< td=""><td>10(</td><td>55</td><td>_</td><td>103</td><td>2.6</td><td>33</td><td>8 2</td><td>0.0</td><td>36</td><td>87</td><td>0.0</td><td>39</td><td>95</td><td>0.0</td><td>59</td><td>143</td><td>0.0</td><td>8 2</td><td>190</td><td>0.0</td><td>46</td><td>11 7</td><td>φ α</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10(                  | 55         | _        | 103  | 2.6 | 33  | 8 2    | 0.0                | 36   | 87        | 0.0   | 39    | 95    | 0.0  | 59    | 143   | 0.0  | 8 2      | 190  | 0.0     | 46           | 11 7         | φ α                    |
| 5.2         40         103         2.7         35         84         0.0         36         93         0.0         39         101         0.0         59         151         0.0         78         200         0.0           5.4         39         103         2.7         33         88         0.0         36         96         0.0         39         103         0.0         59         157         0.0         78         20         0.0         50         160         0.0         78         20         0.0         90         0.0         59         160         0.0         78         20         0.0         90         0.0         59         160         0.0         78         100         0.0         59         160         0.0         39         100         0.0         59         160         0.0         78         100         0.0         39         111         0.0         59         160         0.0         39         111         0.0         59         160         0.0         78         100         0.0         39         111         0.0         59         160         0.0         78         20         0.0         50         100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.2         4.0         10.3         2.7         3.5         84         0.0         36         93         0.0         39         10.0         59         15.0         78         20.0         34         6.0         36         93         0.0         39         103         0.0         78         11.0         78         20.0         34         46         50.0         36         96         0.0         39         10.0         59         150         0.0         78         21.0         0.0         46         56         50         46         50.0         46         56         50         78         21.0         0.0         46         56         50         78         21.0         0.0         46         50         46         0.0         46         50         60         78         10.0         50         160         0.0         78         10.0         78         10.0         78         10.0         78         10.0         78         10.0         78         10.0         40         60         40         60         80         90         90         90         90         90         90         90         90         90         90         90 <td>10(</td> <td>74 5.</td> <td>+</td> <td>103</td> <td>2.6</td> <td>33</td> <td>83</td> <td>0:0</td> <td>36</td> <td>91</td> <td>0.0</td> <td>39</td> <td>66</td> <td>0.0</td> <td>29</td> <td>149</td> <td>0.0</td> <td>78</td> <td>198</td> <td>0.0</td> <td>46</td> <td>15</td> <td>0 00</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10(                  | 74 5.      | +        | 103  | 2.6 | 33  | 83     | 0:0                | 36   | 91        | 0.0   | 39    | 66    | 0.0  | 29    | 149   | 0.0  | 78       | 198  | 0.0     | 46           | 15           | 0 00                   |
| 5.4         39         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10.2         10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.4.         39         10.3         2.0         39         10.4         7.0         7.8         2.0         0.0         44           5.4.         39         10.3         2.0         39         10.3         0.0         39         10.3         0.0         50         10.3         0.0         36         0.0         39         10.0         30         10.3         0.0         39         10.0         30         10.3         0.0         30         10.3         0.0         30         10.3         0.0         30         10.3         0.0         30         10.3         0.0         30         10.3         0.0         30         10.3         0.0         30         10.3         0.0         30         10.3         0.0         30         10.3         0.0         30         10.3         0.0         30         10.3         0.0         30         10.3         0.0         30         10.3         0.0         30         10.3         0.0         30         10.3         0.0         30         10.3         0.0         30         10.3         0.0         30         10.3         0.0         30         10.3         0.0         30         10.3         0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 97                   | 5 5.2      |          | 103  | 2.7 | 33  | 84     | 0.0                | 36   | 93        | 0.0   | 39    | 101   | 0.0  | 59    | 151   | 0.0  | 78       | 202  | 0.0     | 46 1         | 18           | · · ·                  |
| 5.5         38         10.0         36         98         10.0         39         10.0         59         160         10.0         59         160         10.0         59         160         10.0         59         160         10.0         59         160         10.0         59         160         10.0         59         160         10.0         59         160         10.0         59         160         10.0         59         160         10.0         59         160         10.0         78         217         0.0         78         217         0.0         78         217         0.0         78         217         0.0         78         217         0.0         78         217         0.0         78         217         0.0         78         217         0.0         78         217         0.0         78         217         0.0         78         217         0.0         78         217         0.0         78         10.0         78         10.0         78         10.0         78         10.0         78         10.0         78         10.0         78         10.0         78         10.0         78         10.0         78         10.0 <th< td=""><td>5.5         38         103         2.8         33         89         0.0         36         107         0.0         59         160         0.0         78         213         0.0         46           5.6         37         103         2.8         33         89         0.0         36         100         0.0         59         165         0.0         78         217         0.0         46           5.8         37         103         2.9         3.0         0.0         39         113         0.0         59         166         0.0         78         217         0.0         46           5.9         103         2.9         3.0         0.0         39         113         0.0         59         166         0.0         78         217         0.0         46           6.0         35         103         0.0         39         117         0.0         59         166         0.0         78         179         0.0         46           6.0         35         103         0.0         39         117         0.0         59         166         0.0         78         27         0.0         46</td><td>94</td><td>0 8<br/>0 5</td><td>_</td><td>103</td><td>2.7</td><td>3,3</td><td>98</td><td>0.00</td><td>36</td><td>95</td><td>0.0</td><td>39</td><td>10.5</td><td>0.0</td><td>200</td><td>154</td><td>0.0</td><td>20 00</td><td>206</td><td>0.0</td><td>466</td><td>207.</td><td>φ oc</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.5         38         103         2.8         33         89         0.0         36         107         0.0         59         160         0.0         78         213         0.0         46           5.6         37         103         2.8         33         89         0.0         36         100         0.0         59         165         0.0         78         217         0.0         46           5.8         37         103         2.9         3.0         0.0         39         113         0.0         59         166         0.0         78         217         0.0         46           5.9         103         2.9         3.0         0.0         39         113         0.0         59         166         0.0         78         217         0.0         46           6.0         35         103         0.0         39         117         0.0         59         166         0.0         78         179         0.0         46           6.0         35         103         0.0         39         117         0.0         59         166         0.0         78         27         0.0         46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 94                   | 0 8<br>0 5 | _        | 103  | 2.7 | 3,3 | 98     | 0.00               | 36   | 95        | 0.0   | 39    | 10.5  | 0.0  | 200   | 154   | 0.0  | 20 00    | 206  | 0.0     | 466          | 207.         | φ oc                   |
| 5.6         3.7         10.3         2.8         3.3         91         0.0         36         100         39         100         39         100         39         100         39         100         39         100         39         100         39         100         39         100         39         100         39         111         0.0         59         160         0.0         78         27         100         30         100         39         111         0.0         59         160         0.0         39         112         0.0         59         160         0.0         39         112         0.0         59         160         0.0         39         112         0.0         59         160         0.0         39         112         0.0         59         160         0.0         39         112         0.0         39         112         0.0         39         112         0.0         36         100         0.0         39         117         0.0         59         172         0.0         78         180         0.0         30         0.0         39         112         0.0         39         112         0.0         39         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.6         3.7         10.3         2.8         3.3         91         0.0         36         10.0         59         16.5         0.0         78         2.7         0.0         46           5.7         3.0         1.0         3.6         10.0         3.9         11.0         0.0         59         165         0.0         78         2.2         10.0         46           5.9         3.0         3.2         3.3         9.4         0.0         3.6         10.2         0.0         3.9         11.0         0.0         59         166         0.0         78         2.2         0.0         46           6.0         3.5         10.3         3.0         3.6         10.0         3.9         11.0         0.0         59         17.2         0.0         46           6.0         3.5         10.3         3.0         10.0         3.0         10.0         3.0         17.2         0.0         3.0         1.0         0.0         3.0         17.2         0.0         4.6           6.0         3.0         3.0         3.0         3.0         10.0         3.0         10.0         5.0         1.0         0.0         4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8                    | 7 5.£      | +        | 103  | 2.8 | 33  | 8      | 0:0                | 36   | 86        | 0.0   | 39    | 107   | 0.0  | 29    | 160   | 0.0  | 78       | 213  | 0.0     | 1 9          | 24           | 0 00                   |
| 5.6         3.6         10.2         2.6         3.9         11.1         0.0         2.9         10.0         2.9         10.0         2.9         10.0         2.9         10.0         2.9         10.0         2.9         10.0         2.0         2.0         3.0         10.0         3.0         10.0         2.0         3.0         10.0         3.0         10.0         2.0         3.0         10.0         3.0         10.0         2.0         3.0         10.0         3.0         10.0         3.0         10.0         3.0         10.0         3.0         10.0         3.0         10.0         3.0         10.0         3.0         10.0         3.0         10.0         3.0         10.0         3.0         10.0         3.0         10.0         3.0         10.0         3.0         10.0         3.0         10.0         3.0         10.0         3.0         10.0         3.0         10.0         3.0         10.0         3.0         10.0         3.0         10.0         3.0         10.0         3.0         10.0         3.0         10.0         3.0         10.0         3.0         10.0         3.0         10.0         3.0         10.0         3.0         10.0         3.0 <td>5.7         37         103         2.8         3.9         3.9         10.0         3.9         11.0         0.0         3.9         160         0.0         78         2.2         0.0         46           5.9         35         103         2.9         3.3         94         0.0         36         102         0.0         39         113         0.0         59         172         0.0         78         2.2         0.0         46           6.0         35         103         2.0         3.0         107         0.0         59         172         0.0         78         2.2         0.0         46           6.0         3.0         3.0         3.0         100         3.0         100         0.0         59         172         0.0         78         2.4         0.0         46           6.0         3.0         3.0         3.0         3.0         100         3.0         100         3.0         100         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0</td> <td>86</td> <td>4 5.6</td> <td></td> <td>103</td> <td>2.8</td> <td>33</td> <td>91</td> <td>0.0</td> <td>36</td> <td>100</td> <td>0.0</td> <td>39</td> <td>109</td> <td>0.0</td> <td>59</td> <td>163</td> <td>0.0</td> <td>78</td> <td>217</td> <td>0.0</td> <td>10 11</td> <td>27 ,</td> <td>· · ·</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.7         37         103         2.8         3.9         3.9         10.0         3.9         11.0         0.0         3.9         160         0.0         78         2.2         0.0         46           5.9         35         103         2.9         3.3         94         0.0         36         102         0.0         39         113         0.0         59         172         0.0         78         2.2         0.0         46           6.0         35         103         2.0         3.0         107         0.0         59         172         0.0         78         2.2         0.0         46           6.0         3.0         3.0         3.0         100         3.0         100         0.0         59         172         0.0         78         2.4         0.0         46           6.0         3.0         3.0         3.0         3.0         100         3.0         100         3.0         100         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0         4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 86                   | 4 5.6      |          | 103  | 2.8 | 33  | 91     | 0.0                | 36   | 100       | 0.0   | 39    | 109   | 0.0  | 59    | 163   | 0.0  | 78       | 217  | 0.0     | 10 11        | 27 ,         | · · ·                  |
| 6.0         35         103         2.9         33         96         0.0         36         105         39         115         0.0         59         175         0.0         78         239         0.0           6.0         35         103         3.0         36         107         2.0         36         107         0.0         39         117         0.0         59         175         0.0         78         233         0.0           6.1         35         104         3.0         36         109         2.0         39         120         0.0         59         182         0.0         78         240         0.0           6.3         35         108         3.1         36         115         2.1         36         110         0.0         39         120         0.0         59         182         0.0         78         244         0.0           6.6         35         112         2.0         36         124         0.0         39         124         0.0         59         182         0.0         78         248         0.0           6.6         35         112         0.0         39         126 <td>5.9         35         103         2.9         33         96         0.0         36         105         103         172         0.0         78         229         0.0         46           6.0         35         103         3.0         36         107         2.0         36         107         0.0         39         117         0.0         59         175         0.0         78         233         0.0         46           6.0         35         104         3.0         36         109         2.0         36         100         0.0         59         175         0.0         78         244         0.0         46           6.3         35         108         3.0         36         112         0.0         39         120         0.0         59         182         0.0         78         244         0.0         46           6.3         35         108         3.1         36         112         2.0         36         124         0.0         59         188         0.0         78         244         0.0         46           6.9         35         109         3.0         39         124         0.0</td> <td>χ<br/>20   20</td> <td>2 0 0</td> <td>+</td> <td>103</td> <td>2.8</td> <td>33</td> <td>92</td> <td>0.0</td> <td>36</td> <td>103</td> <td>0.0</td> <td>39</td> <td>= 13</td> <td>0.0</td> <td>20</td> <td>169</td> <td>0.0</td> <td>2 × ×</td> <td>225</td> <td>0.0</td> <td>46 4</td> <td>31</td> <td>δ   œ</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.9         35         103         2.9         33         96         0.0         36         105         103         172         0.0         78         229         0.0         46           6.0         35         103         3.0         36         107         2.0         36         107         0.0         39         117         0.0         59         175         0.0         78         233         0.0         46           6.0         35         104         3.0         36         109         2.0         36         100         0.0         59         175         0.0         78         244         0.0         46           6.3         35         108         3.0         36         112         0.0         39         120         0.0         59         182         0.0         78         244         0.0         46           6.3         35         108         3.1         36         112         2.0         36         124         0.0         59         188         0.0         78         244         0.0         46           6.9         35         109         3.0         39         124         0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | χ<br>20   20         | 2 0 0      | +        | 103  | 2.8 | 33  | 92     | 0.0                | 36   | 103       | 0.0   | 39    | = 13  | 0.0  | 20    | 169   | 0.0  | 2 × ×    | 225  | 0.0     | 46 4         | 31           | δ   œ                  |
| 6.0         35         103         3.0         36         107         2.0         36         107         0.0         39         117         0.0         59         175         0.0         78         233         0.0           6.1         35         104         3.0         36         109         0.0         39         119         0.0         59         182         0.0         78         244         0.0           6.2         35         108         3.1         36         112         0.0         39         120         0.0         59         182         0.0         78         244         0.0           6.5         35         108         3.1         36         112         0.0         39         126         0.0         59         186         0.0         78         244         0.0           6.5         35         112         3.2         36         116         0.0         39         126         0.0         59         186         0.0         78         249         0.0           6.6         35         112         0.0         39         126         0.0         59         189         0.0         78 </td <td>6.0         35         103         3.0         36         107         2.0         39         117         0.0         59         175         0.0         78         233         0.0         46           6.1         35         103         3.0         36         107         2.0         39         117         0.0         59         178         0.0         78         240         0.0         46           6.2         35         108         3.1         36         112         0.0         39         120         0.0         59         189         0.0         78         249         0.0         46           6.3         35         108         3.1         36         112         0.0         39         122         0.0         59         189         0.0         78         249         0.0         46           6.6         35         112         3.1         36         114         0.0         39         124         0.0         59         189         0.0         78         249         0.0         46           6.6         35         116         0.0         39         124         0.0         59         189</td> <td>7.8</td> <td>9 5.6</td> <td><math>\vdash</math></td> <td>103</td> <td>2.9</td> <td>33</td> <td>96</td> <td>0.0</td> <td>36</td> <td>105</td> <td>0.0</td> <td>39</td> <td>115</td> <td>0.0</td> <td>59</td> <td>172</td> <td>0.0</td> <td>78</td> <td>229</td> <td>0.0</td> <td>1-</td> <td>33</td> <td><u>∞</u></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.0         35         103         3.0         36         107         2.0         39         117         0.0         59         175         0.0         78         233         0.0         46           6.1         35         103         3.0         36         107         2.0         39         117         0.0         59         178         0.0         78         240         0.0         46           6.2         35         108         3.1         36         112         0.0         39         120         0.0         59         189         0.0         78         249         0.0         46           6.3         35         108         3.1         36         112         0.0         39         122         0.0         59         189         0.0         78         249         0.0         46           6.6         35         112         3.1         36         114         0.0         39         124         0.0         59         189         0.0         78         249         0.0         46           6.6         35         116         0.0         39         124         0.0         59         189                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.8                  | 9 5.6      | $\vdash$ | 103  | 2.9 | 33  | 96     | 0.0                | 36   | 105       | 0.0   | 39    | 115   | 0.0  | 59    | 172   | 0.0  | 78       | 229  | 0.0     | 1-           | 33           | <u>∞</u>               |
| 6.1         35         104         3.0         109         2.0         39         120         50         178         50         178         50         10         52         10         50         10         50         10         50         10         50         10         50         10         50         10         50         10         50         10         50         10         50         10         50         10         50         10         50         10         50         10         50         10         50         10         50         10         50         10         50         10         50         10         50         10         50         10         50         10         50         10         50         10         50         10         50         10         50         10         50         10         50         10         50         10         50         10         50         10         50         10         50         10         50         10         50         10         50         10         50         10         50         10         50         10         50         10         50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.1         35         104         3.0         36         103         3.0         39         103         0.0         39         176         0.0         39         178         0.0         39         178         0.0         39         178         0.0         39         178         0.0         39         178         0.0         39         178         0.0         39         178         0.0         39         178         0.0         39         180         0.0         39         180         0.0         78         244         0.0         46           6.3         35         108         3.1         36         113         2.1         36         115         0.0         39         122         0.0         59         180         0.0         78         244         0.0         46           6.5         35         112         3.2         36         117         2.2         36         118         0.0         39         122         0.0         59         180         0.0         39         170         0.0         59         180         0.0         46           6.5         35         113         2.2         36         118<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 76                   | 6.6        | -        | 103  | 3.0 | 36  | 107    | 2.0                | 36   | 107       | 0.0   | 39    | 117   | 0.0  | 59    | 175   | 0.0  | 78       | 233  | 0.0     | 1 46         | 36 ,         | φ c                    |
| 6.3         35         108         3.1         36         113         2.1         36         112         0.0         39         122         0.0         59         183         0.0         78         244         0.0           6.4         35         109         3.1         36         115         2.1         36         114         0.0         39         124         0.0         59         186         0.0         78         248         0.0           6.5         35         112         3.2         36         116         0.0         39         126         0.0         59         189         0.0         78         256         0.0           6.8         35         112         3.2         36         119         0.0         39         122         0.0         59         198         0.0         78         256         0.0           6.8         35         112         3.2         36         120         0.0         39         136         0.0         59         198         0.0         78         256         0.0           6.9         35         121         0.0         39         136         0.0         59 </td <td>6.3         35         108         3.1         36         113         2.1         36         112         0.0         39         122         0.0         59         183         0.0         78         244         0.0         46           6.4         35         109         3.1         36         115         2.1         36         114         0.0         39         124         0.0         59         186         0.0         78         248         0.0         46           6.6         35         112         3.2         36         117         2.2         36         118         0.0         59         189         0.0         78         256         0.0         46           6.6         35         113         3.2         37         120         2.2         36         120         0.0         39         136         0.0         38         136         0.0         38         136         0.0         38         136         0.0         38         136         0.0         38         46           6.8         35         116         0.0         39         136         0.0         38         136         0.0         38<td>72</td><td>2 6.2</td><td>_</td><td>105</td><td>3.0</td><td>36</td><td>110</td><td>2.0</td><td>36</td><td>110</td><td>0.0</td><td>39</td><td>120</td><td>0.0</td><td>29</td><td>180</td><td>0.0</td><td>0 / 8/</td><td>240</td><td>0.0</td><td>46 4</td><td>00 4<br/>40 4</td><td>o ∞<br/>•</td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.3         35         108         3.1         36         113         2.1         36         112         0.0         39         122         0.0         59         183         0.0         78         244         0.0         46           6.4         35         109         3.1         36         115         2.1         36         114         0.0         39         124         0.0         59         186         0.0         78         248         0.0         46           6.6         35         112         3.2         36         117         2.2         36         118         0.0         59         189         0.0         78         256         0.0         46           6.6         35         113         3.2         37         120         2.2         36         120         0.0         39         136         0.0         38         136         0.0         38         136         0.0         38         136         0.0         38         136         0.0         38         46           6.8         35         116         0.0         39         136         0.0         38         136         0.0         38 <td>72</td> <td>2 6.2</td> <td>_</td> <td>105</td> <td>3.0</td> <td>36</td> <td>110</td> <td>2.0</td> <td>36</td> <td>110</td> <td>0.0</td> <td>39</td> <td>120</td> <td>0.0</td> <td>29</td> <td>180</td> <td>0.0</td> <td>0 / 8/</td> <td>240</td> <td>0.0</td> <td>46 4</td> <td>00 4<br/>40 4</td> <td>o ∞<br/>•</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 72                   | 2 6.2      | _        | 105  | 3.0 | 36  | 110    | 2.0                | 36   | 110       | 0.0   | 39    | 120   | 0.0  | 29    | 180   | 0.0  | 0 / 8/   | 240  | 0.0     | 46 4         | 00 4<br>40 4 | o ∞<br>•               |
| 6.4         35         109         3.1         36         115         2.1         36         114         0.0         39         124         0.0         59         186         0.0         78         248         0.0           6.5         35         112         3.2         36         117         2.2         36         116         0.0         39         126         0.0         59         189         0.0         78         256         0.0           6.7         35         112         3.2         37         119         2.2         36         118         0.0         59         189         0.0         78         250         0.0           6.8         35         117         3.3         37         125         2.3         36         120         0.0         59         198         0.0         78         260         0.0           6.8         35         112         3.2         37         125         2.3         36         125         0.0         39         136         0.0         59         201         0.0         78         260         0.0           7.1         35         125         2.7         36 </td <td>6.4         35         109         3.1         36         115         2.1         36         114         0.0         39         124         0.0         59         186         0.0         78         248         0.0         46           6.5         35         112         3.2         36         117         2.2         36         116         0.0         39         126         0.0         59         189         0.0         78         256         0.0         46           6.6         35         112         3.2         37         122         36         119         0.0         39         136         0.0         59         189         0.0         46           6.7         35         117         3.2         37         122         36         120         0.0         39         136         0.0         59         189         0.0         39         46           6.9         35         117         3.2         37         125         2.3         36         120         0.0         39         136         0.0         78         264         0.0         46           6.0         35         121         0.0</td> <td>7/</td> <td>11 6.3</td> <td><math>\vdash</math></td> <td>108</td> <td>3.1</td> <td>36</td> <td>113</td> <td>2.1</td> <td>36</td> <td>112</td> <td>0.0</td> <td>39</td> <td>122</td> <td>0.0</td> <td>59</td> <td>183</td> <td>0.0</td> <td>78</td> <td>244</td> <td>0.0</td> <td>1-</td> <td>42</td> <td><u>∞</u></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.4         35         109         3.1         36         115         2.1         36         114         0.0         39         124         0.0         59         186         0.0         78         248         0.0         46           6.5         35         112         3.2         36         117         2.2         36         116         0.0         39         126         0.0         59         189         0.0         78         256         0.0         46           6.6         35         112         3.2         37         122         36         119         0.0         39         136         0.0         59         189         0.0         46           6.7         35         117         3.2         37         122         36         120         0.0         39         136         0.0         59         189         0.0         39         46           6.9         35         117         3.2         37         125         2.3         36         120         0.0         39         136         0.0         78         264         0.0         46           6.0         35         121         0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7/                   | 11 6.3     | $\vdash$ | 108  | 3.1 | 36  | 113    | 2.1                | 36   | 112       | 0.0   | 39    | 122   | 0.0  | 59    | 183   | 0.0  | 78       | 244  | 0.0     | 1-           | 42           | <u>∞</u>               |
| 6.0         3.5         112         3.2         3.0         117         2.2         3.6         118         0.0         3.9         128         0.0         3.9         128         0.0         3.9         128         0.0         3.9         128         0.0         3.9         128         0.0         3.9         128         0.0         3.9         128         0.0         3.9         128         0.0         3.9         128         0.0         3.9         128         0.0         3.9         128         0.0         3.9         128         0.0         3.9         128         0.0         3.9         128         0.0         3.9         128         0.0         3.9         128         0.0         3.9         128         0.0         3.9         128         0.0         3.9         138         0.0         5.9         109         0.0         3.9         138         0.0         5.9         100         0.0         3.9         138         0.0         5.9         100         0.0         3.9         138         0.0         5.9         100         0.0         0.0         0.0         2.0         0.0         0.0         0.0         0.0         0.0         0.0 <td>6.0         35         112         3.2         3.0         117         2.2         36         118         0.0         39         128         0.0         39         0.0         39         129         0.0         39         120         0.0         39         120         0.0         39         120         0.0         39         120         0.0         39         120         0.0         39         120         0.0         39         120         0.0         39         120         0.0         39         120         0.0         39         120         0.0         39         120         0.0         39         120         0.0         39         120         0.0         39         130         0.0         39         130         0.0         39         130         0.0         39         140         0.0         39         130         0.0         39         130         0.0         39         130         0.0         39         140         0.0         39         130         0.0         39         140         0.0         39         130         0.0         39         140         0.0         39         140         0.0         39         140         &lt;</td> <td>89</td> <td>0 6.4</td> <td>-</td> <td>109</td> <td>3.1</td> <td>36</td> <td>115</td> <td>2.1</td> <td>36</td> <td>417</td> <td>0.0</td> <td>39</td> <td>124</td> <td>0.0</td> <td>220</td> <td>186</td> <td>0.0</td> <td>2 0</td> <td>248</td> <td>0.0</td> <td>46</td> <td>5 1</td> <td>φ 0<br/>0</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.0         35         112         3.2         3.0         117         2.2         36         118         0.0         39         128         0.0         39         0.0         39         129         0.0         39         120         0.0         39         120         0.0         39         120         0.0         39         120         0.0         39         120         0.0         39         120         0.0         39         120         0.0         39         120         0.0         39         120         0.0         39         120         0.0         39         120         0.0         39         120         0.0         39         120         0.0         39         130         0.0         39         130         0.0         39         130         0.0         39         140         0.0         39         130         0.0         39         130         0.0         39         130         0.0         39         140         0.0         39         130         0.0         39         140         0.0         39         130         0.0         39         140         0.0         39         140         0.0         39         140         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 89                   | 0 6.4      | -        | 109  | 3.1 | 36  | 115    | 2.1                | 36   | 417       | 0.0   | 39    | 124   | 0.0  | 220   | 186   | 0.0  | 2 0      | 248  | 0.0     | 46           | 5 1          | φ 0<br>0               |
| 6.7         35         115         3.2         36         120         2.2         36         119         0.0         39         130         0.0         59         195         0.0         78         260         0.0           6.8         35         117         3.3         37         123         2.3         36         121         0.0         39         132         0.0         59         198         0.0         78         264         0.0           7.0         35         121         3.4         37         122         3.4         37         120         0.0         39         134         0.0         59         201         0.0         78         264         0.0           7.1         35         123         3.4         37         127         2.4         36         128         0.0         39         140         0.0         59         204         0.0         78         271         0.0           7.2         35         122         3.6         136         0.0         39         140         0.0         59         204         0.0         78         271         0.0           7.4         35         132<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.7         35         115         3.2         36         120         2.2         36         119         0.0         39         130         0.0         59         195         0.0         78         260         0.0         46           6.8         35         117         3.3         37         123         2.3         36         121         0.0         39         132         0.0         59         198         0.0         78         264         0.0         46           6.9         35         112         3.4         37         129         2.4         36         128         0.0         59         201         0.0         78         264         0.0         46           7.1         35         123         3.4         37         129         2.4         36         128         0.0         39         134         0.0         59         201         0.0         46           7.1         35         123         3.4         37         132         2.4         36         138         0.0         39         144         0.0         59         201         0.0         46           7.2         35         132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 96                   | 1 6.6      | +        | 113  | 3.2 | 37  | 119    | 2.2                | 36   | 118       | 0.0   | 39    | 128   | 0.0  | 59    | 192   | 0.0  | 78       | 256  | 0.0     | 46 +         | 49           | 0 4 8                  |
| 6.8         3.5         117         3.3         3.7         123         2.3         3.6         121         0.0         39         132         0.0         59         198         0.0         78         264         0.0           6.9         3.5         119         3.5         123         6.0         39         134         0.0         59         204         0.0         78         264         0.0           7.0         3.5         121         3.4         3.7         129         2.4         36         126         0.0         39         138         0.0         59         204         0.0         78         275         0.0           7.2         3.5         12.6         3.6         126         0.0         39         140         0.0         59         201         0.0         78         275         0.0           7.3         3.5         12.7         3.6         132         0.0         39         144         0.0         59         212         0.0         78         28         0.0           7.4         3.5         12.2         3.6         132         0.0         39         144         0.0         59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.8         35         117         3.3         37         123         2.3         36         121         0.0         39         132         0.0         59         198         0.0         78         264         0.0         46           6.9         35         119         3.3         37         125         2.3         36         123         0.0         39         134         0.0         59         204         0.0         78         264         0.0         46           7.1         35         121         3.4         37         129         2.4         36         126         0.0         39         140         0.0         59         204         0.0         78         204         0.0         46           7.2         3.5         126         36         128         0.0         39         140         0.0         59         210         0.0         78         204         46           7.2         3.5         37         131         2.5         36         130         0.0         39         144         0.0         59         212         0.0         46           7.2         35         132         2.0 <td>62</td> <td>2 6.7</td> <td>Н</td> <td>115</td> <td>3.2</td> <td>36</td> <td>120</td> <td>2.2</td> <td>36</td> <td>119</td> <td>0.0</td> <td>39</td> <td>130</td> <td>0.0</td> <td>59</td> <td>195</td> <td>0.0</td> <td>78</td> <td>260</td> <td>0 (</td> <td>1 46</td> <td>51</td> <td>84</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 62                   | 2 6.7      | Н        | 115  | 3.2 | 36  | 120    | 2.2                | 36   | 119       | 0.0   | 39    | 130   | 0.0  | 59    | 195   | 0.0  | 78       | 260  | 0 (     | 1 46         | 51           | 84                     |
| 7.0         35         121         3.4         37         127         2.4         36         125         0.0         39         136         0.0         59         204         0.0         78         271         0.0           7.1         35         123         3.4         37         129         2.4         36         126         0.0         39         138         0.0         59         207         0.0         78         275         0.0           7.2         35         126         3.6         126         0.0         39         140         0.0         59         207         0.0         78         275         0.0           7.4         35         126         3.6         126         0.0         39         140         0.0         59         210         0.0         78         279         0.0           7.5         35         132         2.6         36         132         0.0         39         144         0.0         59         218         0.0         39         144         0.0         59         218         0.0         39         144         0.0         59         218         0.0         30         14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.0         35         121         3.4         37         127         2.4         36         125         0.0         39         136         0.0         59         204         0.0         78         271         0.0         46           7.1         35         123         3.4         37         129         2.4         36         126         0.0         39         138         0.0         59         207         0.0         78         275         0.0         46           7.2         35         125         3.6         126         0.0         39         140         0.0         59         207         0.0         78         279         0.0         46           7.3         35         127         3.5         37         132         2.5         36         140         0.0         59         210         0.0         78         279         0.0         46           7.5         35         132         2.7         136         132         0.0         39         144         0.0         59         221         0.0         46           7.6         35         132         0.0         39         148         0.0 <td>58</td> <td>5 6.8</td> <td>_</td> <td>117</td> <td>3.3</td> <td>37</td> <td>123</td> <td>2.3</td> <td>36</td> <td>121</td> <td>0.0</td> <td>39</td> <td>132</td> <td>0.0</td> <td>29</td> <td>198</td> <td>0.0</td> <td>78</td> <td>264</td> <td>0</td> <td>46 1</td> <td>54</td> <td>8 4 8</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 58                   | 5 6.8      | _        | 117  | 3.3 | 37  | 123    | 2.3                | 36   | 121       | 0.0   | 39    | 132   | 0.0  | 29    | 198   | 0.0  | 78       | 264  | 0       | 46 1         | 54           | 8 4 8                  |
| 7.1         35         123         3.4         37         129         2.4         36         126         0.0         39         138         0.0         59         207         0.0         78         275         0.0           7.2         35         125         3.6         128         0.0         39         140         0.0         59         210         0.0         78         275         0.0           7.4         35         125         3.6         130         0.0         39         144         0.0         59         215         0.0         78         283         0.0           7.5         35         132         3.7         136         2.7         36         146         0.0         59         216         0.0         78         283         0.0           7.5         35         132         3.7         140         2.7         36         148         0.0         59         221         0.0         78         2.1         0.0         50         221         0.0         20         20         0.0         20         20         0.0         20         0.0         20         0.0         20         20         0.0<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.1         35         123         3.4         37         129         2.4         36         126         0.0         39         138         0.0         59         207         0.0         78         275         0.0         46           7.2         35         125         3.5         37         131         2.5         36         128         0.0         39         140         0.0         59         210         0.0         78         279         0.0         46           7.4         3.5         137         135         2.6         36         130         0.0         39         144         0.0         59         215         0.0         46           7.5         3.5         137         136         2.7         36         134         0.0         39         148         0.0         59         218         0.0         46           7.5         3.5         137         3.5         134         0.0         39         148         0.0         59         221         0.0         46           7.7         3.6         132         0.0         39         148         0.0         59         224         0.0         83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 56                   | 7 7.0      | $\vdash$ | 121  | 3.4 | 37  | 127    | 2.4                | 36   | 125       | 0.0   | 39    | 136   | 0.0  | 59    | 204   | 0.0  | 78       | 271  | 0       | 11 9+        | 28           | 84                     |
| 7.2 35 125 3.5 37 131 2.5 36 128 0.0 39 140 0.0 59 210 0.0 76 279 0.0 0.0 74 2.7 0.0 0.0 59 142 0.0 59 210 0.0 78 2.8 0.0 0.0 0.0 39 142 0.0 59 210 0.0 78 287 0.0 0.0 0.0 35 127 3.5 129 3.6 3.7 135 2.6 36 130 0.0 39 142 0.0 59 215 0.0 78 287 0.0 0.0 0.0 35 132 3.7 37 138 2.7 36 135 0.0 39 146 0.0 59 218 0.0 83 308 2.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.1 0.0 12.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.2 35 125 3.5 37 131 2.5 36 128 0.0 39 140 0.0 59 210 0.0 78 287 0.0 46 7.4 35 127 3.5 37 133 2.5 36 130 0.0 39 142 0.0 59 210 0.0 78 287 0.0 46 7.4 35 129 3.6 3.5 37 135 2.6 36 130 0.0 39 142 0.0 59 215 0.0 78 287 0.0 46 7.5 35 132 3.7 37 138 2.7 36 134 0.0 39 146 0.0 59 218 0.0 83 308 2.1 46 7.5 36 133 3.7 37 140 2.7 36 135 0.0 39 146 0.0 59 221 0.0 83 312 2.1 46 7.7 36 136 3.8 37 142 2.8 36 137 0.0 39 150 0.0 59 224 0.0 83 318 2.4 46 7.8 36 134 3.0 39 151 0.0 59 227 0.0 84 325 2.1 46 7.8 36 141 4.0 38 147 3.0 39 153 0.0 39 153 0.0 64 249 2.0 85 332 3.0 46 8.0 36 144 4.3 38 151 3.3 40 157 2.3 39 155 0.0 65 258 2.6 86 344 3.9 46 8.0 36 144 4.3 38 151 3.3 40 157 2.3 39 155 0.0 65 258 2.6 86 344 3.9 30 46 8.0 36 158 3.0 46 8.0 36 158 3.0 46 8.0 36 158 3.0 46 8.0 36 158 3.0 46 8.0 36 158 3.0 46 8.0 36 158 3.0 46 8.0 36 158 3.0 46 8.0 36 158 3.0 46 8.0 36 158 3.0 46 8.0 36 158 3.0 46 8.0 36 158 3.0 46 8.0 36 158 3.0 46 8.0 36 158 3.0 46 8.0 36 158 3.0 46 8.0 36 158 3.0 46 8.0 36 158 3.0 46 8.0 36 158 3.0 46 8.0 36 158 3.0 46 8.0 36 158 3.0 46 8.0 36 158 3.0 46 8.0 36 158 3.0 46 8.0 36 158 3.0 46 8.0 36 158 3.0 46 8.0 36 158 3.0 46 8.0 36 158 3.0 46 8.0 36 158 3.0 46 8.0 36 158 3.0 46 8.0 36 158 3.0 46 8.0 36 158 3.0 46 8.0 36 158 3.0 46 8.0 36 158 3.0 46 8.0 36 158 3.0 46 8.0 36 158 3.0 46 8.0 36 158 3.0 46 8.0 36 158 3.0 46 8.0 36 158 3.0 46 8.0 36 158 3.0 46 8.0 36 158 3.0 46 8.0 36 158 3.0 46 8.0 36 158 3.0 46 8.0 36 158 3.0 46 8.0 36 158 3.0 46 8.0 36 158 3.0 46 8.0 36 158 3.0 46 8.0 36 158 3.0 46 8.0 36 158 3.0 46 8.0 36 158 3.0 46 8.0 36 158 3.0 46 8.0 36 158 3.0 46 8.0 36 158 3.0 46 8.0 36 158 3.0 46 8.0 36 158 3.0 46 8.0 36 158 3.0 46 8.0 36 158 3.0 46 8.0 36 158 3.0 46 8.0 36 158 3.0 46 8.0 46 8.0 36 158 3.0 46 8.0 36 158 3.0 46 8.0 36 158 3.0 46 8.0 36 158 3.0 46 8.0 36 158 3.0 46 8.0 36 158 3.0 46 8.0 36 158 3.0 46 8.0 36 158 3.0 46 8.0 36 158 3.0 46 8.0 36 158 3.0 46 8.0 36 158 3.0 46 8.0 36 158 3.0 46 8.0 36 158 3.0 46 8.0 36 158 3.0 46 8.0 36 158 3.0 46 8.0 36 158 3.0 46 8.0 46 8.0 46 8.0 46 8.0 46  | 55                   |            | +        | 123  | 3.4 | 37  | 129    | 2.4                | 36   | 126       | 0.0   | 39    | 138   | 0.0  | 53    | 207   | 0.0  | 2 %      | 275  | -       | 46           | 09           | 8 4                    |
| 7.4         35         129         3.6         37         135         2.6         36         132         0.0         39         144         0.0         59         215         0.0         78         287         0.0           7.5         35         132         3.7         37         138         2.7         36         134         0.0         39         146         0.0         59         218         0.0         83         308         2.1           7.6         35         132         3.7         37         140         2.7         36         135         0.0         39         148         0.0         59         221         0.0         83         308         2.1           7.7         36         136         36         137         0.0         39         150         0.0         59         224         0.0         83         318         2.4           7.8         36         138         36         139         0.0         39         151         0.0         84         325         2.7           7.9         36         144         4.0         59         223         36         325         3.0         84 <td>7.4         35         129         3.6         37         135         2.6         36         132         0.0         39         144         0.0         59         215         0.0         78         287         0.0         46           7.5         35         132         3.7         37         138         2.7         36         134         0.0         39         146         0.0         59         218         0.0         83         308         2.1         46           7.6         35         133         3.7         37         140         2.7         36         135         0.0         39         148         0.0         59         221         0.0         83         312         2.1         46           7.7         36         136         0.0         39         148         0.0         59         221         0.0         83         312         2.1         46           7.8         36         136         137         0.0         39         150         0.0         59         227         0.0         83         318         2.4         46           7.8         36         144         4.0         38</td> <td>51</td> <td></td> <td>+</td> <td>127</td> <td>3.5</td> <td>37</td> <td>133</td> <td>2.5</td> <td>36</td> <td>130</td> <td>0.0</td> <td>39</td> <td>142</td> <td>0.0</td> <td>20</td> <td>212</td> <td>0.0</td> <td>0 / 8</td> <td>283</td> <td>+</td> <td>+</td> <td>165</td> <td>0 4 8</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.4         35         129         3.6         37         135         2.6         36         132         0.0         39         144         0.0         59         215         0.0         78         287         0.0         46           7.5         35         132         3.7         37         138         2.7         36         134         0.0         39         146         0.0         59         218         0.0         83         308         2.1         46           7.6         35         133         3.7         37         140         2.7         36         135         0.0         39         148         0.0         59         221         0.0         83         312         2.1         46           7.7         36         136         0.0         39         148         0.0         59         221         0.0         83         312         2.1         46           7.8         36         136         137         0.0         39         150         0.0         59         227         0.0         83         318         2.4         46           7.8         36         144         4.0         38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 51                   |            | +        | 127  | 3.5 | 37  | 133    | 2.5                | 36   | 130       | 0.0   | 39    | 142   | 0.0  | 20    | 212   | 0.0  | 0 / 8    | 283  | +       | +            | 165          | 0 4 8                  |
| 7.5         35         132         3.7         13         2.7         36         134         0.0         39         146         0.0         59         218         0.0         83         308         2.1           7.6         35         133         3.7         37         140         2.7         36         135         0.0         59         148         0.0         59         221         0.0         83         312         2.1           7.7         36         136         3.8         145         2.8         36         130         0.0         59         224         0.0         83         318         2.4           7.8         36         148         0.0         59         127         0.0         83         318         2.4           7.8         36         148         0.0         59         127         0.0         83         318         2.4           7.9         36         141         4.0         38         147         3.0         153         153         0.0         64         249         2.0         85         332         3.0           8.0         36         144         4.3         38 </td <td>7.5 35 132 3.7 37 138 2.7 36 134 0.0 39 146 0.0 59 218 0.0 83 308 2.1 46 7.6 35 132 3.1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3</td> <td>46</td> <td></td> <td><math>\vdash</math></td> <td>129</td> <td>3.6</td> <td>37</td> <td>135</td> <td>2.6</td> <td>36</td> <td>132</td> <td>0.0</td> <td>39</td> <td>144</td> <td>0.0</td> <td>59</td> <td>215</td> <td>0.0</td> <td>78</td> <td>287</td> <td>0</td> <td>Н</td> <td>Н</td> <td>84</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.5 35 132 3.7 37 138 2.7 36 134 0.0 39 146 0.0 59 218 0.0 83 308 2.1 46 7.6 35 132 3.1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 46                   |            | $\vdash$ | 129  | 3.6 | 37  | 135    | 2.6                | 36   | 132       | 0.0   | 39    | 144   | 0.0  | 59    | 215   | 0.0  | 78       | 287  | 0       | Н            | Н            | 84                     |
| 7.7 36 136 3.8 37 142 2.8 36 150 0.0 39 150 0.0 59 224 0.0 83 318 2.4 7.8 36 138 3.9 38 145 2.9 36 139 0.0 39 151 0.0 59 227 0.0 84 325 2.7 7.9 36 144 4.3 38 151 3.3 40 157 2.3 39 155 0.0 65 258 2.6 86 344 3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.7 36 136 3.8 3.9 37 142 2.8 36 137 0.0 39 150 0.0 59 224 0.0 83 318 2.4 46 7.8 36 138 3.9 38 145 2.9 36 139 0.0 39 151 0.0 59 227 0.0 84 325 2.7 46 7.9 36 141 4.0 38 147 3.0 39 153 2.0 39 153 0.0 64 249 2.0 85 332 3.0 46 8.0 36 144 4.3 38 151 3.3 40 157 2.3 39 155 0.0 65 258 2.6 86 344 3.9 46 46 46 47 3.0 38 151 3.3 40 157 2.3 39 155 0.0 65 258 2.6 86 344 3.9 46 46 46 47 3.0 38 151 3.3 40 157 2.3 39 155 0.0 65 258 2.6 86 344 3.9 46 46 46 47 3.0 38 151 3.3 40 157 2.3 39 155 0.0 65 258 2.6 86 344 3.9 46 46 46 47 3.0 38 151 3.3 40 157 2.3 39 155 0.0 65 258 2.6 86 344 3.9 46 46 46 47 3.0 38 151 3.3 40 157 2.3 39 155 0.0 65 258 2.6 86 244 3.9 46 46 46 47 3.0 38 151 3.3 40 157 2.3 39 155 0.0 65 258 2.6 86 244 3.9 46 46 46 47 3.0 38 151 3.3 40 157 2.3 39 155 0.0 65 258 2.6 86 244 3.9 46 46 46 47 3.0 38 151 3.3 40 157 2.3 39 155 0.0 65 258 2.6 86 244 3.9 46 46 46 47 3.0 38 151 3.3 40 157 2.3 39 155 0.0 65 258 2.6 86 244 3.9 46 46 46 47 3.0 38 151 3.0 46 46 47 3.0 38 151 3.0 46 47 3.0 38 151 3.0 46 47 3.0 38 151 3.0 46 47 3.0 38 151 3.0 46 47 3.0 38 151 3.0 46 47 3.0 38 151 3.0 46 47 3.0 38 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 151 3.0 48 | 45                   |            | -        | 132  | 3.7 | 37  | 138    | 2.7                | 36   | 134       | 0.0   | 39    | 146   | 0.0  | 20    | 218   | 0.0  | 83       | 308  | 2.1     | 46 4         | 70/2         | 00 4<br>00 00<br>00 00 |
| 7.8     36     138     3.9     38     145     2.9     36     139     0.0     39     151     0.0     59     227     0.0     84     325     2.7       7.9     36     141     4.0     38     147     3.0     39     153     2.0     39     153     0.0     64     249     2.0     85     332     3.0       8.0     36     144     4.3     38     151     3.3     40     157     2.3     39     155     0.0     65     258     2.6     86     344     3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.8 36 138 3.9 38 145 2.9 36 139 0.0 39 151 0.0 59 227 0.0 84 325 2.7 46 7.9 36 144 4.3 38 147 3.0 39 153 2.0 39 153 0.0 64 249 2.0 85 332 3.0 46 8.0 36 144 4.3 38 151 3.3 40 157 2.3 39 155 0.0 65 258 2.6 86 344 3.9 46 VALUES IN FEFT. LISTED RADIUS IS THE MINIMUM ALLOWABLE RADIUS FOR THE CORRESPONDING E, Lt, Lr, AND w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 44                   |            | +        | 136  | 3.8 | 37  | 142    | 2.8                | 36   | 137       | 0.0   | 39    | 150   | 0.0  | 59    | 224   | 0.0  | 83       | 318  | 2.4     | 46           | 74           | 84                     |
| 7.9 36 141 4.0 38 147 3.0 39 153 2.0 39 153 0.0 64 249 2.0 85 332 3.0 80 8.0 36 144 4.3 38 151 3.3 40 157 2.3 39 155 0.0 65 258 2.6 86 344 3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.9 36 141 4.0 38 147 3.0 39 153 2.0 39 153 0.0 64 249 2.0 85 332 3.0 46 8.0 3.0 36 144 4.3 3.0 151 3.3 40 157 2.3 39 155 0.0 65 258 2.6 86 344 3.9 46 VALUES IN FEET. LISTED RADIUS IS THE MINIMUM ALLOWABLE RADIUS FOR THE CORRESPONDING E, Lt, Lr, AND w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 42                   |            | Н        | 138  | 3.  | 2   | 145    | 2.9                | 36   | 139       |       | 39    | 151   |      | 59    | 227   | 0.0  | 84       | 325  |         | ì            |              | ∞                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | VALUES IN FEET. LISTED RADIUS IS THE MINIMUM ALLOWABLE RADIUS FOR THE CORRESPONDING E, Lt, Lr, AND w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 35                   | ×          | +        | 141  | 4 4 | +   | 147    |                    | 39   | 153       |       | 39    | 153   |      | 64    | 4   W |      | 85       | 332  |         | `            | 179          | 8 4<br>8 8             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | % w VALUES IN FEET. LISTED RADIUS IS THE MINIMUM ALLOWABLE RADIUS FOR THE CORRESPONDING E, Lt, Lr, AND w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AT ON                |            | 1        |      |     |     |        |                    |      |           |       |       |       |      |       |       |      |          |      |         |              |              |                        |
| 8 w VALUES IN FEET. LISTED RADIUS IS THE MINIMUM ALLOWABLE RADIUS FOR THE CORRESPONDING E, Lt, Lr, AND w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lt, L                | ≥<br>⊗     | ALUES    |      |     |     | RADIUS | $\overline{\circ}$ |      |           | ALLOW | /ABLE | RADIU |      |       | CORR  | ESPO | DING     | Ľ,   | -r, AND |              | VALUES.      |                        |

TRANSITION CURVES - RURAL 35 MPH DESIGN SPEED

VIRGINIA DEPARTMENT OF TRANSPORTATION

| The STOCK A DESIGN SPEELD OF ACT MPH (RURAL) USING E= 87 MAX.    18   17   WURL-20 F  WU | 1    | RAMPS       | F                                       |                                       | 0        | 52   | 57  | 09       | 65               | 67   | 70        | 2 5  | 75    | 78       | 80 % | 85   | 88       | 90  | Ç6<br>96 | 98       | 101           | 106       | 108          | = = = | 116 | 119      | 124 | 126      | 129 | 134     | 137 | 142 | 144      | 150   | 152      | 157                             | 160      | 16.5 | 168     | 170 | 175  | 178  | 183        | 186     | 188      | 193          | 196      | 198   | 204   | 900                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------|-----------------------------------------|---------------------------------------|----------|------|-----|----------|------------------|------|-----------|------|-------|----------|------|------|----------|-----|----------|----------|---------------|-----------|--------------|-------|-----|----------|-----|----------|-----|---------|-----|-----|----------|-------|----------|---------------------------------|----------|------|---------|-----|------|------|------------|---------|----------|--------------|----------|-------|-------|---------------------------------------|
| Maint-Registry   Main   |      |             |                                         | _ t                                   | 0        | 52   | 52  | 52       | 5.5              | 52   | 52        | 52   | 52    | 52       | 52   | 52   | 52       | 52  | 52       | 52       | 52            | 52        | 52           | 52    | 52  | 52       | 52  | 52       | 52  | 52      | 52  | 52  | 52       | 52    | 52       | 52                              | 52       | 52   | 52      | 52  | 52   | 52   | 52         | 52      | 52       | 52           | 52       | 52    | 52    | r c                                   |
| Maint-Registry   Main   |      | RCHAN       | 1 × × × × × × × × × × × × × × × × × × × | ـــــــــــــــــــــــــــــــــــــ | 0        | 2 49 | 54  | 26       | 5 2              | 64   | 99        | 99   | 200   | 73       | 76   | 80   | 83       | 82  | 06       | 93       | 95            | 100       | 102          | 105   | 110 | 112      | 117 | 119      | 122 | 127     | 129 | 134 | 136      | 141   | 144      | 0<br>4<br>1<br>4<br>8<br>4<br>1 | 151      | 153  | 158     | 160 | 165  | 168  | 173        | 175     | 177      | 182          | 185      | 197   | 192   | 10,                                   |
| NOTICE FOR A DESIGN SPEED OF ADMINIST FUND HAS FIND HAS   | XAN  | INTER       | 5                                       | ۲                                     | 0        | 64   | 49  | 49       | y 4<br>0 4       | 64   | 49        | 64   | 94    | 49       | 64   | 9 4  | 49       | 64  | 64 4     | 49       | 49            | 64 6      | 49           | 49    | 64  | 64       | 94  | 49       | 64  | 49      | 49  | 94  | 49       | 949   | 64       | y 4<br>0                        | 49       | 49   | 49      | 49  | 94   | 49   | 9 4<br>9 4 | 49      | 64       | 49           | 49       | 49    | 64    | 5                                     |
| Mathematical Region    |      | FT          |                                         |                                       | 0.0      | 0.0  | 0.0 | 0.0      | 0.0              | 0.0  | 0.0       | 0.0  | 0.0   | 0.0      | 0.0  | 0.0  | 0.0      | 0.0 | 0.0      | 0.0      | 0.0           | 0.0       | 0.0          | 0.0   | 0.0 | 0.0      | 0.0 | 0.0      | 0.0 | 0.0     | 0.0 | 0.0 | 0.0      | 0.0   | 0.0      | 0.0                             | 0.0      | 0.0  | 0.0     | 0.0 | 0.0  | 0.0  | 0.0        | 0.0     | 0.0      | 0.0          | 0.0      | 0.0   | 2.1   | 2                                     |
| NATIONAL PROPERTY OF THE PROPERTY OF THE WORLD-S FT WOR |      |             | 0                                       | د  ر                                  | 0        | 83   | 92  | 96       | 104              | 108  | 112       | 112  | 120   | 125      | 129  | 137  | 141      | 145 | 154      | 158      | 162           | 170       | 174          | 178   | 187 | 191      | 199 | 203      | 207 | 216     | 220 | 228 | 232      | 240   | 245      | 249                             | 257      | 261  | 269     | 274 | 282  | 286  | 290        | 298     | 303      | 311          | 315      | 319   | 346   | 7 2 2                                 |
| Mainth-list F   Maint-20 F      | 5    | WIDT        | 1                                       | - 1                                   | 0        | 83   | 83  | 83       | 2 62             |      |           |      |       |          | 833  | 83 6 | 83       | 83  | 000      | 83       | 83            | 000       | 83           | 83    | 83  | 83       | 83  | 83       | 83  | 83      | 83  | 83  | 83       | 83    | 83       | 83 83                           | 83       | 833  | 83.0    | 83  | 83   | 83   | 83         | 83      | 83       | 83           | 83       | 83    | 8 8   | 5                                     |
| Mainth-18 FT   Mainth-20 FT   Mainth-22 FT   Mainth-24 FT   Mainth-18 FT   Mainth-20 FT   Mainth-22 FT   Mainth-22 FT   Mainth-24 FT   Mainth-18 FT   Mainth-22 FT   Mainth-22 FT   Mainth-24 FT   Main   | USI  | <u> </u>    |                                         | >                                     | 0.0      | 0.0  | 0.0 | 0.0      |                  | 0.0  | 0.0       | 0.0  | 0.0   | 0.0      | 0.0  | 0.0  | 0.0      | 0.0 | 0.0      | 0.0      | 0.0           | 0.0       | 0.0          | 0.0   | 0.0 | 0.0      | 0.0 | 0.0      | 0.0 | 0.0     | 0.0 | 0.0 | 0.0      | 0.0   | 0.0      | 0.0                             | 0.0      | 0 0  | 0.0     |     |      | 0.0  | 0.0        | 0.0     | 0.0      | 0.0          | 0.0      | 0.0   | 0.0   | C                                     |
| Colone   C   |      | 184         | WID!H                                   | <u>-</u> -                            | +        | +    |     |          | +                |      | $\vdash$  | +    | _     | +        | +    | +    | $\vdash$ | +   | +        | +        | $\rightarrow$ |           | +            | -     | _   | $\vdash$ | _   | $\vdash$ | _   | +       | -   | _   | $\vdash$ | +     | $\vdash$ | +                               | $\vdash$ | _    |         |     |      |      | _          | $\perp$ |          |              | $\vdash$ | 239   | 46    | 090                                   |
| Column   C   | KUR, |             |                                         | <b>ا</b>                              | $\vdash$ | +    | +   |          | +                |      | $\forall$ | +    | _     | +        | +    | +    | Н        | +   | +        | +        | +             | +         | $\forall$    | +     | 2 6 | $\vdash$ | +   | $\vdash$ | +   | +       | +   | +   | 2        | 2 12  | M 1      | 2 12                            | M        | W 4  | 2 2     | 2 2 | 2 12 | W 1  | 2 2        | 2 2     | 2        | 2 12         | 2        | 53 2  | 53 2  | 2 4 2                                 |
| Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |             | ₹H                                      | _                                     | $\vdash$ |      | _   |          | _                |      |           | _    |       | $\vdash$ | _    |      | ш        | +   |          | $\vdash$ | _             | +         | $\perp$      | _     |     | $\vdash$ |     | Н        | +   | $\perp$ | _   |     | -        |       | $\sqcup$ | _                               | $\vdash$ | _    | $\perp$ | _   | +    | -    | _          | +       |          |              | Н        |       | 0     | <br>                                  |
| Name      | MP   | -24 F       | ANES<br>12-                             | <u> </u>                              | +        | +    |     |          |                  |      |           | +    |       |          | -    |      |          | 5 6 | 0 [      | +        | _             | +         | +            | _     |     | $\vdash$ | +   | $\vdash$ | +   | +       | -   | 7 4 | $\vdash$ | +     | +        | 27 6                            | 29<br>C  | 31 0 | 35 0    | _   | +    | 2    | 0 6        | +       | $\vdash$ | _            | 0 89     | 00 00 | 34 0. | 16.6                                  |
| Name      | 04   | /IDTH       | 5   t                                   | -                                     |          | +    |     | 2 0      | 7 6              | 7 2  | 2         | 2 0  | 7 2   | 2        | 2 2  | 7 7  | 2        | 2 0 | 7 0      | 2 1      | 2 2           | v ~       | 1 2          | 2 0   | 7 7 |          | +   |          | 2 2 | 7 2     | 2 0 | 2 2 | 2 0      | 7 2 7 | 2 12     | 7 2                             | 2 1;     | 2 6  | 2 2     | 2 0 | 7 6  | 2 7  | 2 2        | 2   7   | 2 7      | 2 2          | 2        | 2 2   | 2 2   | 0                                     |
| CK   CK   CK   CK   CK   CK   CK   CK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |             | M<br>H<br>H<br>H                        |                                       | $\sqcup$ | _    |     | 0 0      | 0 0              | 0 0  | 0 4       | 0 0  | 0 0   | 4        | 0 0  | 0 0  | 4        | 0 0 | 0 0      | 4        | 0 0           | 0 0       | 0            | 0 0   | 0 0 | Н        | -   | Н        | 0 0 | 0 0     | 4 . | 0 0 | 0 0      | 0 0   | 4 .      | 0 0                             | 4        | 0 0  | 0 0     | 0 0 | 0 0  | 0 0  | 0 0        | 4       | 4 4      | 2 0          | 4        | 0 0   | 0 4   | C                                     |
| CKA FACTORS FOR A DESIGN SPINATE FOUNALE FOUNA |      |             |                                         |                                       | +        | +    |     |          | +                |      |           | _    |       | +        | -    |      | $\vdash$ | 0 0 | 0        | 0.       | 0 0           | 0         |              | +     |     | $\vdash$ | +   | H        |     | +       | ١.  |     |          | -     |          | +                               | o.       | 0 0  | +       | _   | +    | 0 0  | j 0        | 0       | 0 0      | - r          | 0.       | 0 0   | 0     | (                                     |
| Carron   C   | SPE  | DTH=        | ALEN-                                   | -                                     |          | +    |     | +        | +                |      | $\vdash$  | +    |       | +        | +    | _    | $\vdash$ | +   | +        |          | 2/2           | 2 2       | $\vdash$     | +     | +   | $\vdash$ | +   | H        | +   |         | +   | 9 9 | 1219     | -     | $\vdash$ | +                               | 118      | 2 2  | +       | +   | +    | H)   | 13         | 13      | 13       | 41 4         | 4        | 4 7   | 150   | 10,1                                  |
| CN FACTORS FOR A DESIGN SOFTWARD IN The 20 CONTROL OF C | Z    | <b>≯</b>  } | )<br> <br> -<br> -                      | +=                                    | $\vdash$ | _    |     |          | +                |      |           | +    |       |          | _    | -    | $\vdash$ | +   | +        | +        | 38            | 2 6       | $\mathbb{H}$ | 1     |     | H        | +   | H        |     | 111     |     | -   |          |       |          | 2 8                             | 38       | 3 3  | 3 8     | 38  | 3 8  | 38   | 3 8        | 38      | 38       | 388          | 38       | 38    | 38 7  |                                       |
| CAN   FACTORS   FOR   NINTH- 18 FT   NINTH- 19 FT   |      | 띹           | - 1                                     | <u>,</u>                              | +        | +    | +   | $\vdash$ |                  |      |           | 0.0  | 0.0   | 0.0      | 0 0  |      | 0        | +   | +        | 0        | 0 0           |           |              | +     | _   | $\vdash$ | +   | o.       |     |         |     | +   | +        | 9 0   | 0        | 0 0                             | 0.0      | 0 0  | 2.0     | 2.0 | 2.5  | 2, 2 | 2.2        | 2       | 2,0      | 2.7          | 2.5      | 2.5   | 2.5   | ۲                                     |
| CAN   F ACTORS   FOR   North   18 FT   North   |      | DTH=2       | 70°<br>10°<br>10°                       | ,   _                                 | 0        | 35   | 38  | 40       | 4 4 4            | 45   | 47        | 47   | 24 00 | 52       | 54   | 57   | 59       | 61  | 64       | 99       | 89            | 7 7       | 73           | 75    | 78  | 80       | 83  | 85       | 8 8 | 8 6     | 92  | 94  | 97       | 100   | 102      | 106                             | 107      | 105  | 124     | 126 | 130  | 132  | 136        | 136     | 141      | 145          | 148      | 150   | 155   | 150                                   |
| CN   F ACTORS   F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N    |             |                                         | Ļ                                     | 0        | 35   | 3   | 20 2     | 0 6.             | 0 60 | 2         | 2 2  | J W   | 2        | 35   | 35   | 35       | 35  | 35       | 35       | 35            | 35        | 35           | 35    | 35  | 35       | 35  | 35       | 35  | 35      | 35  | 35  | 35       | 35    | 35       | 35                              | 35       | 35   | 39      | 39  | 39   | 39   | 39         | 39      | 39       | 39           | 39       | 39    | 40    | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |
| (GN FACTOR<br>WITH-<br>WITH-<br>NC 0 0 10<br>2.1 32 33<br>2.2 32 32<br>2.3 32 33<br>2.4 32 33<br>2.5 32 32<br>2.7 32 32<br>2.8 84 117<br>3.0 64 117<br>3.1 76 117<br>3.2 64 117<br>3.3 65 117<br>4.4 54 117<br>3.5 65 117<br>4.5 52 117<br>4.6 51 117<br>5.7 44 117<br>5.6 44 117<br>5.7 45 117<br>6.0 39 117<br>6.1 39 117<br>6.2 38 117<br>7.3 64 117<br>7.4 65 117<br>7.5 5.8 41 117<br>7.6 6.9 37 122<br>6.8 37 122<br>6.9 37 122<br>6.9 37 122<br>6.9 37 122<br>6.0 37 122<br>6.0 37 122<br>6.0 37 122<br>6.1 37 122<br>6.2 38 133<br>7.1 130<br>7.2 37 122<br>6.3 37 122<br>7.1 37 139<br>7.2 38 139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | [뉴   논      | _الة                                    |                                       | 0.0      | 0.0  | 0.0 | 0.0      | )<br>)<br>)<br>( | 0.0  | 0.0       | 2.0  | 2.0   | 2.0      | 2.1  | 2.1  | 2.1      | 2.2 | 2.2      | 2.2      | 2.2           | ر. ک<br>ج | 2.3          | 2.3   | 2.4 | 2.4      | 2.5 | 2.5      | 2.5 | 2.6     | 2.6 | 2.5 | 2.7      | 2.7   | 2.8      | 2 2 2                           | 2.9      | 2.9  | 3.0     | 3.0 | 3.1  | 3.1  | 3.2        | 3.3     | 3.3      | 3.4          | 3.5      | 3.5   | 3.7   | 5                                     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | ⊃TH=        | 0                                       | ,   그                                 | 0        | 3.3  | 35  | 36       | 0 0              | £ 4  | 42        | 11/2 | 11/   | 117      | 117  | 117  | 117      | 117 | 11/      | 117      | 117           | 11        | 117          | 117   | 117 | 117      | 11/ | 117      | 117 | 117     | 117 | 117 | 11       | 11/   | 117      | 11/                             | 117      | 117  | 118     | 120 | 124  | 126  | 128        | 133     | 135      | 139          | 141      | 143   | 148   | 1 T                                   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | M           |                                         | Ļ                                     | 0        | 32   | 32  | 32       | 20 25            | 32   | 32        | 8    | 8 4   | 78       | 9/   | 71   | 69       | 67  | 64       | 62       | 9             | 0 KG      | 26           | 55    | 52  | 51       | 49  | 84       | 47  | 45      | 45  | 44  | 45       | 47    | 40       | 39                              | 38       | 38   | 37      | 37  | 37   | 37   | 37         | 37      | 37       | ς<br>38<br>8 | 38       | 38 2  | 38    | 0 10                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | >           | -                                       | E(%)                                  | NC S     | 2.1  | 2.2 | 2.3      | 2.5              | 2.6  | 2.7       | 2.7  | 2.9   | 3.0      | 3.1  | 3.3  | 3.4      | 3.5 | 3.7      | 3.8      | 6.5           | 4.1       | 4.2          | 6.4   | 4.5 | 4.6      | 4.8 | 4.9      | 5.0 | 5.2     | 5.3 | 5.5 | 5.6      | 5.8   | 5.9      | 0.0<br>6.1                      | 6.2      | 6.3  | 6.5     | 6.6 | 6.8  | 6.9  | 7.1        | 7.2     | 7.3      | 7.5          | 7.6      | 7.7   | 7.9   | cα                                    |
| ニー・ロー・ロー・ロー・ロー・ロー・ロー・ロー・ロー・ロー・ロー・ロー・ロー・ロー                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SIG  | SIGN        | -40                                     |                                       | П        |      |     |          | Т                |      |           |      |       |          |      |      | П        |     |          |          |               |           |              |       |     |          |     | П        |     |         |     |     |          |       |          |                                 | П        |      |         |     |      |      |            |         |          |              | П        |       |       | Т                                     |

TRANSITION CURVES - RURAL 40 MPH DESIGN SPEED

REV. 1/07 802.38

VIRGINIA DEPARTMENT OF TRANSPORTATION

SPECIFICATION REFERENCE

|                | MPS         | F             | ۲            | 0 4  | 200  | 64    | 67   | 7 2 2   | 75   | 78   | - α<br>84<br>84 | 98 8 | 92   | 92   | 92   | 97   | 100  | 106            | 108  | 111        | 117  | 120  | 122        | 128  | 131      | 136          | 139  | 142   | 147               | 150      | 153         | 158  | 161   | 167  | 172      | 175  | 178          | 183   | 186  | 100         | 194  | 197  | 203            | 205   | 208  | 211  | 216        | 219  | TC-5.01       |
|----------------|-------------|---------------|--------------|------|------|-------|------|---------|------|------|-----------------|------|------|------|------|------|------|----------------|------|------------|------|------|------------|------|----------|--------------|------|-------|-------------------|----------|-------------|------|-------|------|----------|------|--------------|-------|------|-------------|------|------|----------------|-------|------|------|------------|------|---------------|
|                | E RAMPS     | _ ∞           |              | 0 4  | 56   | 56    | 56   | 200     | 56   | 56   | 56              | 56   | 56   | 56   | 56   | 56   | 56   | 56             | 56   | 56         | 56   | 99   | 56         | 56   | 56       | 200          | 56   | 56    | 26                | 56       | 56          | 56   | 56    | 56   | 26       | 56   | 56           | 56    | 56   | 0 2         | 56   | 56   | 0 2            | 56    | 95   | 56   | 26         | 56   | 8             |
|                | INTERCHANGE | ¥ T           | ۲            | 0 2  | 56   | 58    | 63   | 99      | 72   | 4/   | //              | 882  | 4004 | 87   | 780  | 92   | 95   | 000            | 103  | 105        | 3 =  | 113  | 116        | 121  | 124      | 97 20        | 132  | 134   | \ 0<br>\ 0<br>\ 0 | 142      | 145         | 150  | 153   | 821  | 163      | 166  | 168          | 174   | 176  | 2 2         | 184  | 187  | 200            | 195   | 197  | 200  | 202        | 208  | VALUES        |
| MAX.           | NTER        | 16            |              | 0 4  | 53   | 53    | 53   | 53      | 53   | 53   | 53              | 53   | 53   | 53   | 53   | 53   | 53   | 53             | 53   | 53         | 53   | 53   | 53         | 53   | 53       | 53           | 53   | 53    | 53                | 53       | 53          | 53   | 53    | 53   | 53       | 53   | 53           | 53    | 53   | 5.7         | 53   | 53   | 5,7            | 53    | 53   | 53   | 53         | 53   | ງ ≽           |
| <u>``</u>      | F           |               | >            | 0.0  | 0.0  | 0.0   | 0.0  | 0.0     | 0.0  | 0.0  | 0.0             | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0            | 0.0  | 0.0        | 0.0  | 0.0  | 0 0        | 0.0  | 0.0      | 0.0          | 0.0  | 0.0   | 0.0               | 0.0      | 0.0         | 0.0  | 0.0   | 0.0  | 0.0      | 0.0  | 0.0          | 0.0   | 0.0  | 0.0         | 0.0  | 0.0  | 0.0            | 0.0   | 0.0  | 0.0  | 0.0        | 0.0  | r, AND        |
| 00             | - 1         | 12.           | $\mathbb{H}$ | 0 6  | 94   | 98 (  | 07   | 7 2     | 20   | 25 ( | 34              | 38 ( | 5 4  | 47 ( | 747  | 56 ( | 09   | 69             | 4    | 178        |      |      | 96         | 05 ( | 60       | 4 6          | 23 ( | 27 (  | 36 (              | 40       | 45          | 54 ( | 58 (  | 0 67 | 76 0     | 80   | 85           | 94 (  | 98   | 20 0        | 212  | 0 00 | 25             | 29 (  | 34   | 38   | 5 7 4      | 52 ( | , Lt, L       |
| G              | WIDTH=72    | 2             |              | 0 8  | 6 6  | 30 00 | 62   | 2000    | 39   | 39   | 2000            | 200  | 39   | 39   | 39   | 39 1 | 39   | 30 2           | 39   | 39         | 39   | 39 1 | 39         | 39 2 | 39 2     | 2000         | 39 2 | 39 2  | 39 2              | 39 2     | 39 2        | 39 2 | 2 2 2 | 2 2  | 39 2     | 39 2 | 39           | 39 2  | 39 2 | 20 00       | 2000 | 39   | 200            | 39 3  | 39 3 | 39 3 | 39 3       | 39 3 | ING E,        |
| USING          |             |               | >            | 0.0  | j ο. | 0 0   | 0 0  | 2 0     | 0.   | 0.0  | 5 0             | 0.0  | 5 O  | 0.   | 0 0  | 0.   | 0 0  | 0.00           | 0:   | 0.0        | 0.00 | 0.   | 0 0        | 0.00 | 0.0      |              | 0.   | 0 0   |                   | 0.       | 0 0         | 0.   | 0, 0  | 0.0  | j ο<br>σ | 0.   | 0 0          | 0.    | 0.0  | 5 0         | 0.00 | 0.0  |                | 0.    | 0.   | 0 0  | ) O        | 0.0  | " QNOA!       |
| AL) (          | 4=48 FT     | WID I HJ      |              | 0 0  | , 0  | 4 6   | 0 0  | 4 6     | . 0  | 4 1  | ) (o            | 4 7  |      | 0    | 0 4  | 0    | 0 0  | + 1            | 0 09 | 0 6        | 140  | 0 4  | 00         | 0 4  | $\vdash$ | 164          |      | 0 0/1 | 4 V               | $\vdash$ | 184 0       |      | 194 0 | 0 0  | 207 0    | 10 0 | 4 7          | 220 0 | 24 0 | 7 0         | 34 0 | 27 0 | 5 4            | 0 / 1 | 000  | 1 0  | 260 0      | 0 40 | CORRESPONDING |
| RURA           |             | LANE W        |              | +    | , /  | / /   | 0 00 | 00 00   | 0 6  | 0 0  | \ \ \           | 7 7  | 7 1  | 7    | 7 7  | 7 11 | 7 7  | 7              | 7 13 | 7 13       | 7 7  | 7 14 | 7 7        | 7 15 | 7 5      | 7 16         | 7 16 | 7 7   | -  -              | 7 18     | 7 7         | 7 7  | 7 7   | 7 20 | 7 20.    | 7 2  | 7 2          | 7 22  | 7 22 | 7 6         | 2 2  | 7 2  | 7 7            | 2,7   | 7 25 | 7 25 | 7 26       | 7 26 | THE O         |
|                |             |               | Lt           | 0 0  | 9    | 9 9   | 9 0  | 0 0     | 9 0  | 9 0  | 9 9             | 9 9  | 9 9  | 9 0  | 0 0  | 9 0  | 9 9  | +              | 9 0  | 9 0        | +    | 0    | 9 9        | 0    | 0        | 0 0          | 0    | 9 0   |                   | 0        | 9 9         | 9 0  | 0 0   | 9 0  | 9 9      | 9 0  | 0 0          | 9 0   | 9 0  |             | 9    | 9 0  |                | 9     | 9 0  | 9 9  | 9 9        | 9 0  | FOR 1         |
| MPH            | 1-24 FT     | ANE S<br>12'  |              |      | 0 0  | 0 0   | 0 0  | 0 0     | 0    | 0 0  | 0 0             | 0 0  | 0.0  | 0.   | 0 0  | 0.0  | 0 0  | 0 0            | 7 0. | 0 0        | 0    |      | o c        | +    | 0 0      | 5 0          | 0    | 0.0   |                   | 0        | 2 0         | 7 0  | 0 0   | 0.0  | 0 0      | 0    | W 17         | 7     | 0 0  | 7 4         | 0 0  | 000  | 0 0            | 5     | 0.   | 0 0  | 4          | 0 0  | RADIUS F      |
| 45             | WIDTH=24    | 1 🖭           | Н            | 0 4  | t 4  | 4 3   | 10   | Ω Ω     | 9 9  | 9    | 0 0             | 9 7  |      | 7    | 7 7  | 2 2  | ω ω  | ó 86           |      | ο ο<br>ο ο | 5 6  | 96   | 98         | 9 10 | 105      | 109          | 11.  | 10 11 | 3 10              | 17       | 12 2        | 12   | 12 12 | 51 5 | 5 5      | 41   | 4 4          | 4     | 4 4  | ο το<br>5 π | 5 5  | 15 % | 0 10           | 19    | 91 2 | 16   | 1 =        | 7 17 | _             |
| 0F             |             | M             | Lt           | 0 5  | 4 4  | 4 4   | 4    | 4 4     | 4    | 4    | 4 4             | 4 4  | 4 4  | 4    | 4 4  | 45   | 0 0  | † <del>4</del> | 45   | 4 4        | 4    | 4 6  | 4          | 4 4  | 4        | 4 4          | 4    | 4     | 4 4               | 4        | 4 4         | 4    | 4 4   | 4    | 4 4      | 4    | 4 4          | 4     | 4    | 4 4         | 4    | 4    | 4 4            | 4     | 4    | 4    | 4 4        | 4    | ALLOWABLE     |
|                | EZ FT       | 2   E         |              | 0 0  | 0.0  | 0.0   | 0.0  | 0.0     | 0.0  | 0.0  | 0.0             | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0 0  |                | 0.0  | 0.0        | 0.0  | 0.0  | 0.0        | 0.0  | 0.0      |              | +    | 0.0   | 0.0               | 0.0      | 0.0         | 0.0  | 0.0   | 0.0  | 0.0      | 0.0  | 0 0          | 0.0   | 0.0  | 0.0         | 0.0  | 0 0  | 000            | 0.0   | 0.0  | 0 0  | 0.0        | 0.0  | I I           |
| SPEEI          | WIDTH=22    |               | 1 1 1        | 0 5  | 43   | 45    | 4    | 5.7     | 55   | 28   | 62              | 64   | 89   | 68   | 68   | 72   | 74   | 78/            | 80   | 82         | 86   | 88   | 8 8        | 94   | 96       | 2 2          | 102  | 104   | 100               | 110      | 113         | 17   | 13    | 123  | 127      | 129  | 131          | 135   | 137  | 141         | 14.3 | 145  | 140            | 151   | 153  | 155  | 159        | 161  | MUMINIMUM I   |
| NS.            | <b>⊣</b>    | *^IDD:        | Ľ            | 0 5  | 4    | 4 4   | 4    | 4 4     | 4    | 4 :  | 4 4             | 4 2  | 1 4  | 4    | 4 4  | 4    | 4 5  | 1 4            | 41   | 4 4        | 4    | 4    | 4 5        | 4    | 4 2      | 4 4          | 4    | 4 4   | 4 4               | 4        | 4 4         | 4    | 14 4  | 14 2 | 1 4      | 41   | 4 4          | 4     | 4 4  | 4 4         | 4    | 4 4  | 4 4            | 4     | 4    | 4 4  | 1 4        | 4 4  | _H<br>H<br>M  |
| $\overline{S}$ |             | O' PRE        | >            | 0.0  | 0.0  | 0.0   | 0.0  | 0 0     | 0.0  | 0.0  | 0.0             | 0.0  | 0.0  | 0.0  | 0 0  | 0.0  | 0.0  | 0.0            | 0.0  | 0.0        | 0.0  | 0.0  | 0.0        | 0.0  | 0.0      | 0.0          | 0.0  | 0.0   | 0.0               | 0.0      | 0 0         | 0.0  | 0.0   | 0.0  | 0.0      | 0.0  | 0.0          | 0.0   | 0.0  | 0.0         | 2.0  | 2.1  | 2 2            | 2.2   | 2.2  | 2.3  | 2.4        | 2.5  | <u>s</u>      |
| A              | WIDTH=20 F  | 10 10'        |              | 0 %  | 39   | 43    | 45   | 4 4 6 4 | 20   | 52   | 56              | 28   | 62   | 62   | 62   | 65   | 67   | 71             | 73   | 75         | 78/  | 80   | 82         | 86   | 88       | g 6          | 93   | 95    | 66                | 100      | 102         | 106  | 108   | 112  | 115      | 117  | 119          | 123   | 125  | 141         | 143  | 146  | 040            | 153   | 155  | 157  | 162        | 165  | RADIUS        |
| 9<br>8         | <u>≥</u>    |               | Ļ            | 0 0  | 388  | 38    | 38   | 20 00   | 38   | 38   | 2 82            | 38   | 388  | 38   | 3000 | 38   | 38   | 388            | 38   | 38         | 38   | 38   | 38         | 388  | 38       | 20 00        | 388  | 38    | 9 89              | 38       | 2000        | 388  | 38 88 | 38   | 38 20    | 38   | 2000         | 388   | 38   | δ<br>7      | 4    | 42   | 4 4 2          | 42    | 42   | 42   | 42         | 42   | LISTED F      |
| S<br>F         | 18 FT       | ZE.           | >            | 0.0  | 0.0  | 0.0   | 0.0  | 0.0     | 0.0  | 0.0  | 0.0             | 0.0  | 0.0  | 2.1  | 2.1  | 2.1  | 2.1  | 22             | 2.2  | 2.2        | 2.3  | 2.3  | 2.3        | 2.4  | 2.4      | 4.7          | 2.4  | 2.5   | 2.5               | 2.5      | 2.6         | 2.6  | 2.6   | 2.7  | 2.8      | 2.8  | 2, c<br>0, 0 | 2.9   | 2.9  | 2 2         | 3.0  | 2.1  | ٠<br>-<br>-    | 3.2   | 3.2  | 3.3  | 0.0<br>4.0 | 3.5  | ΩI I          |
| ORS            | WIDTH=      | 100           | 1 - 1        | 0 2  | 35   | 37    | 40   | 247     | 45   | 47   | 50              | 52   | 55   | 132  | 132  | 132  | 132  | 132            | 132  | 132        | 132  | 132  | 132        | 132  | 132      | 132          | 132  | 132   | 132               | 132      | 132         | 132  | 132   | 132  | 132      | 132  | 132          | 132   | 132  | 1357        | 137  | 139  | 14.7           | 146   | 148  | 150  | 155        | 158  | FEET.         |
| ACT            | M           |               | Lt           | 0 2  | 34   | 34    | 34   | 34      | 34   | 34   | 34              | 34   | 34   | 80   | 80   | 76   | 74   | 70             | 68   | 66         | 63   | 62   | 9          | 28   | 57       | 54           | 53   | 52    | 50                | 49       | φ<br>4<br>α | 47   | 46    | 44   | 43       | 42   | 42           | 40    | 40   | 90          | 40   | 40   | 04<br>04<br>04 | 40    | 40   | 04   | 4 04       | 40   | JES IN        |
| Z              | >           | _             | E(%)         | N C  | 2.1  | 2.2   | 2.4  | 2.5     | 2.7  | 2.8  | 3.0             | 3.1  | 3.3  | 3.3  | 3.3  | 3.5  | 3.6  | 3.8            | 3.9  | 4.0        | 4.2  | 4.3  | 4.4<br>4.4 | 6.4  | 4.7      | δ. 4<br>0. 6 | 5.0  | 5.1   | 5.3               | 5.4      | 5.5         | 5.7  | 8 6   | 6.0  | 6.2      | 6.3  | 6.4          | 6.6   | 6.7  | 0 0         | 7.0  | 7.1  | 7.7            | 7.4   | 7.5  | 7.6  | /: %:      | 7.9  | VALUES        |
| DESIGN         | DESIGN      | VELOCI<br>-45 | RADIUS(FT)   | 8000 | 4337 | 4467  | 4057 | 3710    | 3554 | 3412 | 3152            | 3035 | 2866 | 2865 | 2822 | 2631 | 2544 | 2383           | 2308 | 2237       | 2104 | 2041 | 1982       | 1870 | 1817     | 1717         | 1669 | 1624  | 15.36             | 1495     | 1454        | 1376 | 1339  | 1266 | 1199     | 1166 | 1135         | 1073  | 1044 | 2101<br>986 | 957  | 929  | 874            | 845   | 817  | 787  | 723        | 683  | NOTE:         |

SPECIFICATION REFERENCE

TRANSITION CURVES - RURAL 45 MPH DESIGN SPEED

VIRGINIA DEPARTMENT OF TRANSPORTATION

REV. 1/07 802.39

| -      | RAMPS                     | FT    | Lr      | 90       | 66<br>66 | 69    | 75         | 78     | 2 48       | 87  | 93         | 96   | 102  | 105   | =   | 114 | 1                                       | 117      | 120   | 126 | 129        | 135 | 138        | 144 | 150   | 156   | 162        | 168   | 174   | 180     | 186     | 189  | 195        | 198  | 201                                   | 207  | 210        | 216  | 219   | 225                                     | 228 | 231     | [      |
|--------|---------------------------|-------|---------|----------|----------|-------|------------|--------|------------|-----|------------|------|------|-------|-----|-----|-----------------------------------------|----------|-------|-----|------------|-----|------------|-----|-------|-------|------------|-------|-------|---------|---------|------|------------|------|---------------------------------------|------|------------|------|-------|-----------------------------------------|-----|---------|--------|
|        |                           | ω     | Lt      | 99       | 09       | 09    | 09         | 09     | 09         | 09  | 09         | 909  | 09   | 60    | 09  | 09  | 09                                      | 90       | 90    | 09  | 60         | 99  | 09         | 909 | 09    | 09    | 09         | 09    | 09    | 09      | 09      | 09   | 09         | 09   | 909                                   | 60   | 90         | 60   | 09    | 09                                      | 09  | 09      | l      |
| MAX.   | CHANGE                    | FT    |         | 57       | 59       | 65    | 2 12       | 73     | 79         | 82  | 2 80       | 90   | 96   | 99    | 104 | 107 | 3 2                                     | 110      | 116   | 138 | 121        | 127 | 130        | 135 | 141   | 146   | 152        | 158   | 163   | 169     | 175     | 177  | 183        | 186  | 101                                   | 194  | 197        | 203  | 205   | 211                                     | 214 | 217     |        |
| ⊠      | INTERCHANGE               | 19    | ± 0     | 57       | 57       | 57    | 57         | 57     | 57         | 57  | 57         | 57   | 57   | 57    | 57  | 57  | 57                                      | 57       | 57    | 57  | 57         | 57  | 57         | 57  | 57    | 57    | 57         | 57    | 22    | 57      | 57      | 57   | 57         | 57   | 57                                    | 57   | 57         | 57   | 57    | 57                                      | 57  | 57      | l      |
| 00     | T H                       |       | > 0     | 0.0      | 0.0      | 0.0   | 0.0        | 0.0    | 0.0        | 0.0 | 0.0        | 0.0  | 0.0  | 0.0   | 0.0 | 0.0 | 0.0                                     | 0.0      | 0.0   | 0.0 | 0.0        | 0.0 | 0.0        | 0.0 | 0.0   | 0.0   | 0.00       | 0.0   | 0.0   | 0.0     | 0.0     | 0.0  | 0.0        | 0.0  | 0.0                                   | 0.0  | 0.0        | 0.0  | 0.0   | 0.0                                     | 0.0 | 0.0     |        |
| B B    |                           | 121   | <u></u> |          | 106      | +     | +          | N CO C | 135        | 140 | 149        | 154  | 164  | 168   | 178 |     | 0 88                                    | $\vdash$ | 192   |     | _          | 10  | 21         | 231 | 240   | 250   | 255        | 269   |       | t 0 0 1 | 298     | 303  | 312        | 317  | 522                                   | 532  | 336        | 346  | 351   | _                                       | +   | 370     |        |
| USING  | WIDTH=72                  | 2     | t c     | ++       | 96       | ++    | 96         | 96     | 96         | 96  | 96         | 96   | 96   | 96    | 96  |     | 96                                      | 96       | 96    | +   | 96         | ++  | +          | 96  | 96    | 96    | 96         | ++    | 96    | 96      | 96      | 96   | 96         | 96   | 96                                    | 96   | 96         | 96   | -     | 96                                      | 96  | 96      |        |
|        | <b>-</b>                  |       |         | 0.0      |          |       | +          |        | 0.0        | 0.0 | 0.0        | 0.0  | 0.0  | 0.0   | 0.0 |     | 0.0                                     |          | 0.0   | +   |            | 0.0 |            |     |       | 0.0   |            |       |       |         | 0.0     | 0.0  | 0.0        | 0.0  | 0.0                                   | 0.0  | 0.0        | 0.0  |       | 0.0                                     | 0.0 | 0.0     |        |
| (RURAL | WIDTH=48 FT<br>ANF WIDTH) | 0 12  | ر ـــ   | ++       | 9/       | ++    | /06        |        | 101        |     | 112 (      | 919  | +    | 126 ( | +   |     | 141                                     |          | 144   | +   | _          | +   | 166 (      |     | 180   | +     | ++         | + + + | +++   | +       | 24 0    | 27 ( | 34         | 38   | 42                                    | 49 ( | 52 0       | +    | 263 ( | +                                       | 74  | 78   0  |        |
|        | WIDTH                     |       | Lt L    | +        | 2 2      | 1 2 6 | 1 2        | 1 2 0  | 7 7        | 2 5 | 2 2        | 2 0  | 2 1. | 2 1   | 12  | 2 5 | 7 7                                     | 2 1      | 2 2   | 7 2 | 2 2        | 2 1 | 2 2        | 2 2 | 120   | 7 2 2 | 2 2 2      | 120   | 120   | 7 2 9   | 2 2     | 2 2  | 2 2        | 2 2  | 2 0                                   | 2 2  | 2 2        | 2 2  | 2 2   | 7 2                                     | 2 2 | 2       | 1      |
| MPH    | -<br> -                   |       | » (     | +        | 0.0      | 000   | 0 0        | 0.0    | 0          |     | 0.0        |      | 0.   | 0.0   | 0.0 | 0.0 | 0.0                                     | 0.0      | 0.0   | 0.0 | 0.0        | 0.0 | 0.0        | 0.0 | 0.0   | 000   | 0.0        | 0.0   | 0.0   | 000     | 0.0     | 0.0  | 0          | 0.0  | 0 0                                   | 0.   | 0.0        | 0 7  | 7 0.  | ) 0                                     | 7   | 7   0 0 | `<br>? |
| 50     | 1=24 FT                   | 12'   |         | ++       |          | +     | +          | +++    | ) (O       | 0 0 | 0 0        | 0 0  | 0 0  | 4 7   | 0   |     | +                                       |          |       | +   |            | +   | 3 0        | 0 0 | 0 0   | 200   |            | 1 2 1 |       | 4 1     | 0.0     | 2 6  | + 0        | 6    | <br>                                  | + 9  | ω <u>-</u> | 3 0. | 0 9   | )<br> <br> <br> <br>                    | 3 0 | 7       |        |
| 90     | 빌                         | 5 -   | c       | +        | 5 53     |       | +          |        | +          | 1   | 0 8        |      |      | φ α   | -   |     | 3 94                                    |          | 96    | +   | <u> </u>   | ++  | 2 2        | 3 3 | 21 2  | 0 8 2 | 8 8 8      | 2 2 2 | 5 4 5 | 4 4     | 8 8 4 4 | 8 0  | 8 5 5      | 51 5 | 2 4                                   | 3 16 | 3 16       | 3 17 | 3 17  | 2 8                                     | 180 | 7       | 5      |
|        | FT W                      |       | Lt      |          | 0 48     |       | -          | 4 4    |            |     |            | 84 8 |      |       | +   |     | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 |          | 48    | +   |            | +   | $\perp$    |     | 4 4 8 | +     | 4 4 4      | -     | ++    | 1 4.    | 4 4     | 4 4  | 4 4        | 4    | 4 4                                   | 48   | 4 4        | 48   |       | 2 4 4 8 4 8                             | 4 8 |         | f<br>_ |
| SPEE   |                           | 1 - 1 | > C     | +        |          |       | 0.0        | +++    | +          | 0.0 | 0.0        | 0.0  | 0.0  | 0.0   | +   | 0.0 | +                                       |          |       | ++  | _          | +   | 0.0        |     |       | 0.0   | +          | 0 0   | 0.0   | 0.0     | 0.0     | 0.0  | 0.0        | 0.0  | 0 0                                   | 0.0  | 0.0        | 0.0  | 0.0   | 0.0                                     | 0.0 | _       | -      |
|        | WIDTH=22 FOLIVALENTS      | 10    | 7 0     | ++       | 47       | 5 2 2 | 25.0       | 28     | 62         | 64  | 69         | 71   | 75   | 77    | 82  | 8   | 8 8                                     | 86       | 88    | 93  | 95         | 6   | 102        | 106 | 110   | 135   | 119        | 124   | 128   | 132     | 135     | 139  | 14.3       | 146  | 148                                   | 152  | 154        | 159  | 161   | 165                                     | 168 | 176     | -      |
| ESIGN  | IM NITIO                  |       | L       | $\dashv$ | 4 4 4    | 4 4   | 4 †<br>4 † | 4 4    | 1 4<br>4 4 | 44  | 4 4<br>4 4 | 4 4  | 4 4  | 44    | 44  | 44  | 4 4<br>4 4                              | 44       | 4 4 4 | 4   | 4 4<br>4 4 | 4 4 | 4 4<br>4 4 | 44  | 4 4   | 4 4   | 4 4 4      | 4 4   | 4 4   | 4 4 3   | 44      | 44   | 1 4<br>4 4 | 4 4  | 4 4                                   | 44   | 4 4 4 4    | 44   | 44    | 4 † † † † † † † † † † † † † † † † † † † | 44  | 7       | +      |
|        | 띮                         |       | > 0     | 0.0      | 0.0      | 0.0   | 0.0        | 0.0    | 0.0        | 0.0 | 0.0        | 0.0  | 0.0  | 0.0   | 0.0 |     | 0.0                                     | 0.0      | 0.0   | 0.0 | 0.0        | 0.0 | 0.0        | 0.0 | 0.0   | 0.0   | 0.00       | 0.0   | 0.0   | 0.0     | 0.0     | 0.0  | 0.0        | 0.0  | 0.0                                   | 0.0  | 0.0        | 2.0  | 2.0   | 2.1                                     | 2.1 | 000     | 7.7    |
| OR A   | WIDTH=20 F                | 1@ 10 | ٦       | 9 9      | 44       | 94 4  | 5 5        | 52     | 56         | 200 | 62         | 64   | 89   | 70    | 747 | 76  | 0 %                                     | 78       | 80 80 | 84  | 88         | 8 8 | 92         | 96  | 100   | 104   | 108        | 112   | 116   | 120     | 122     | 126  | 130        | 132  | 134                                   | 138  | 140        | 159  | 161   | 166                                     | 168 | 171     | -      |
|        | <u></u> Z                 |       | † c     | 9 9      | 04 04    | 04 4  | 4 04       | 04     | 4 04       | 04  | 04 4       | 4 6  | 4 0  | 40    | 40  | 40  | 04                                      | 40       | 04    | 4   | 0 4<br>0 4 | 9 4 | 404        | 40  | 4 6   | 4 4   | 04 6       | 4 6   | 4 4   | 04 6    | 04      | 40   | 04         | 04   | 0 4                                   | 40   | 404        | 45   | 45    | 45                                      | 45  | 45      | )      |
| ORS    | 18 FT<br>DES              | 2     | > 0     | 0.0      | 0.0      |       | 0.0        | 0.0    | 0.0        | 0.0 | 0.0        | 0.0  | 0.0  | 0.0   | 0.0 | 0.0 | 2.2                                     | 2.2      | 2.2   | 2.2 | 2.2        | 2.3 | 2.3        | 2.4 | 4.6   | 2.4   | 2.5        | 2.5   | 2.6   | 2.6     | 2.6     | 2.7  | 2.8        | 2.8  | 2, c<br>00, 00                        | 2.9  | 2.9        | 3.0  | 3.0   | 3.7<br>7.7                              | 3.1 | 4.2     | 1      |
| ACT    | IDTH= 1                   | 1@ 9- | ב כ     | 36       | 38       | 24    | 4 4 5      | 74     | 51         | 53  | 56         | 288  | 62   | 63    | 67  | 69  | 147                                     | 147      | 147   | 147 | 147        | 147 | 147        | 147 | 147   | 147   | 14/        | 147   | 147   | 147     | 14 /    | 147  | 147        | 147  | 147                                   | 147  | 147        | 152  | 154   | 159                                     | 161 | 16.4    | _      |
| ഥ      | MID                       |       | †       | 36       | 36       | 36    | 36         | 36     | 36         | 36  | 36         | 36   | 36   | 36    | 36  | 36  | 76                                      | 76       | 74    | 70  | 69         | 99  | 64         | 62  | 59    | 20    | 55         | 53    | 51    | 64      | 84      | 47   | 46         | 45   | 44                                    | 43   | 42         | 43   | 43    | 54                                      | 43  | 43      | 2      |
| DESIGN |                           |       | E(;;)   | 2.0      | 2.2      | 2.3   | 2.5        | 2.6    | 2.8        | 2.9 | 3.1        | 3.2  | 3.4  | 3.5   | 3.7 | 3.8 | 3.9                                     | 3.9      | 4.0   | 4.2 | 4.4        | 4.5 | 4.6        | 4.8 | 5.0   | 5.2   | 5.4<br>7.4 | 5.6   | 5.8   | 6.0     | 6.2     | 6.3  | 6.5        | 9.9  | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | 6.9  | 7.0        | 7.2  | 7.3   | 7.5                                     | 7.6 | 77      |        |
| DE     | DESIGN                    | -20   | î       |          |          |       |            |        |            |     |            |      |      |       | T   |     |                                         |          |       |     |            |     |            |     |       |       | 1838       |       |       |         |         |      |            |      | T                                     |      |            |      |       |                                         |     |         |        |

TRANSITION CURVES - RURAL 50 MPH DESIGN SPEED

SPECIFICATION REFERENCE

NOTE: Lt, Lr & w VALUES IN FEET. LISTED RADIUS IS THE MINIMUM ALLOWABLE RADIUS FOR THE CORRESPONDING E, Lt, Lr, AND w VALUES.

REV. 1/07 802.40

|             | RAMPS               | FT       | ۲          | 0 64 | 67       | 73    | 76   | 79        | 98   | 68   | 76    | CD 86   | 102  | 105   | 11        | 114      | 117                                         | 120              | 127  | 130  | 136      | 139  | 143      | 143   | 146  | 149      | 152   | 158   | 162      | 165   | 171     | 174      | 177   | 184  | 187      | 190      | 196  | 199      | 203     | 209     | 212  | 218   | 222      | 225      | 228<br>241                                                                      | 234  | 237      | 240   | 247   | 250   | 253      | TC-5.01         |
|-------------|---------------------|----------|------------|------|----------|-------|------|-----------|------|------|-------|---------|------|-------|-----------|----------|---------------------------------------------|------------------|------|------|----------|------|----------|-------|------|----------|-------|-------|----------|-------|---------|----------|-------|------|----------|----------|------|----------|---------|---------|------|-------|----------|----------|---------------------------------------------------------------------------------|------|----------|-------|-------|-------|----------|-----------------|
|             |                     | ∞        | Lt         | 0 49 | 64       | 64    | 64   | 64        | 64   | 64   | 40    | 64      | 64   | 64    | 40        | 64       | 64                                          | 40               | 64   | 64   | 40       | 64   | 64       | 64    | 64   | 64       | 64    | 64    | 64       | 64    | 64      | 64       | 64    | 64   | 64       | 64       | 64   | 64       | 40      | 64      | 64   | 64    | 64       | 64       | 64                                                                              | 64   | 64       | 64    | 64    | 64    | 64       | ι               |
|             | INTERCHANGE         | FT       | ۲          | 0 8  | 63       | 69    | 72   | 75        | 80   | 83   | g 6   | 92      | 92   | 86    | 104       | 107      | 13                                          | 115              | 119  | 122  | 120      | 131  | 134      | 134   | 137  | 140      | 143   | 149   | 152      | 155   | 160     | 163      | 169   | 172  | 175      | 181      | 184  | 187      | 197     | 196     | 199  | 202   | 208      | 211      | 214                                                                             | 220  | 223      | 226   | 232   | 235   | 238      | VALUE           |
| MAX.        | NTE                 | 16       | Lt         | 0 8  | 09       | 09    | 09   | 09 09     | 09   | 09   | 200   | 09      | 09   | 09    | 200       | 09       | 09                                          | 200              | 309  | 09   | 8 8      | 09   | 09       | 09    | 09   | 09       | 09    | 09    | 09       | 09    | 09      | 09       | 9     | 09   | 09       | 09       | 09   | 09       | 20 00   | 09      | 09   | 09    | 09       | 09       | 09                                                                              | 9    | 09       | 09    | 09    | 09    | 09       | >               |
| .;<br> <br> | F                   | _        | *          | 0.0  |          | 0.0   | 0.0  | 0.0       | 0.0  | 0.0  | 0.0   | 0.0     | 0.0  | 0.0   | 0.0       | 0.0      | 0.0                                         | 0.0              | 0.0  | 0.0  | 0.0      | 0.0  | 0.0      | 0.0   | 0.0  | 0.0      | 0.0   | 0.0   | 0.0      | 0.0   | 0.0     | 0.0      | 0.0   | 0.0  | 0.0      | 0.0      | 0.0  | 0.0      | 0.0     | 0.0     | 0.0  | 0.0   | 0.0      | 0.0      | 0.0                                                                             | 0.0  | 0.0      | 0.0   | 0.0   | 0.0   | 0.0      | Lt, Lr, AND     |
| =           | WIDTH=72            | 0 12     | ۲          | 103  | 108      | 118   | 123  | 128       | 138  | 143  | 94.   | 159     | 164  | 169   | 179       | 184      | 189                                         | 35               | 205  | 210  | 220      | 225  | 230      | 230   | 235  | 240      | 246   | 256   | 261      | 266   | 276     | 281      | 286   | 297  | 302      | 307      | 317  | 322      | 327     | 338     | 343  | 353   | 358      | 363      | 368                                                                             | 378  | 383      | 389   | 399   | 404   | 409      | E, Lt,          |
| 9           | MIDI                | 2        | Ļ          | 103  | 103      | 103   | 103  | 103       | 103  | 103  | 10.5  | 103     | 103  | 103   | 10.3      | 103      | 103                                         | 10.5             | 103  | 103  | 10.3     | 103  | 103      | 103   | 103  | 103      | 103   | 103   | 103      | 103   | 103     | 103      | 103   | 103  | 103      | 103      | 103  | 103      | 103     | 103     | 103  | 103   | 103      | 103      | 10.5                                                                            | 103  | 103      | 103   | 103   | 103   | 103      | DING            |
| USING       | L F                 | <u> </u> | 3          | 0.0  | 0.0      | 0.0   | 0.0  | 0.0       | 0.0  | 0.0  | 0.0   | 0.0     | 0.0  | 0.0   | 0.0       | 0.0      | 0.0                                         | 0.0              | 0.0  | 0.0  | 0 0      | 0.0  | 0.0      | 0.0   | 0.0  | 0.0      | 0.0   | 0.0   | 0.0      | 0.0   | 0.0     | 0.0      | 0.0   | 0.0  | 0.0      | 0.0      | 0.0  | 0.0      | 0.0     | 0.0     | 0.0  | 0.0   | 0.0      | 0.0      | ) C                                                                             | 0.0  | 0.0      | 0.0   | 0.0   | 0.0   | 0.0      | CORRESPONDING   |
| AL)         | WIDTH=48 F          | @ 12     | ۲          | 0 /  | 18       | 68    | 92   | 96        | 104  | 108  | 711.7 | 119     | 123  | 127   | 135       | 138      | 142                                         | 14p              | 154  | 158  | 16.5     | 169  | 173      | 17.3  | 177  | 180      | 184   | 192   | 196      | 200   | 207     | 211      | 215   | 223  | 226      | 230      | 238  | 242      | 246     | 253     | 257  | 265   | 269      | 272      | 2/6                                                                             | 284  | 288      | 292   | 299   | 303   | 307      | CORRE           |
| (RUR        | WIDTH               | 2        | Lt         | 0 /  | 77       | //    | 77   | 11        | 77   | 77   | 1     | //      | 77   | 77    | //        | 77       | 7                                           | 1                | 77   | 77   | //       | 77   | 77       | 11    | //   | 77       | 77    | //    | 77       | 77    | //      | 77       | 77    | 77   | 77       | 77       | 77   | 77       | //      | 77      | 77   | //    | 77       | 77       | //                                                                              | 77   | 77       | 77    | //    | 77    | 77       | 丑               |
|             | FT                  | - 1      | >          | 0.0  | 0.0      | 0.0   | 0.0  | 0 0       | 0.0  |      |       | 0.0     | 0.0  |       | 0.0       |          | 0.0                                         | 0 0              | 0.0  | 0.0  |          | 0.0  |          | 0.0   | 0.0  | 0.0      | 0.0   | 0.0   | 0.0      | 0.0   | 0.0     | 0.0      | 0.0   | 0.0  | 0.0      | 0.0      |      |          |         | 0.0     | 0.0  | 0.0   | 0.0      | 0.0      | 0.0                                                                             | 0.0  | 0.0      | 0.0   | 0.0   | 0.0   | 0.0      | FOR             |
| MPH         | WIDTH=24 F          | @ 12.    | 7          | 0    | 54       | 59    | 62   | 64        | 69   | 72   | 1,5   | //      | 82   | 85    | 6         | 92       | 95                                          | 200              | 103  | 105  | 100      | 113  | 115      | 115   | 2 2  | 120      | 123   | 128   | 131      | 133   | 138     | 141      | 143   | 149  | 151      | 15.4     | 159  | 161      | 16.6    | 169     | 172  | 177   | 179      | 182      | 184                                                                             | 189  | 192      | 195   | 200   | 202   | 205      | RADIUS          |
|             | WIDTH               | 5 -      | Lt         | 0    | 52       | 52    | 52   | 52        | 52   | 52   | 22    | 52      | 52   | 52    | 2 22      | 52       | 52                                          | 22.2             | 52   | 52   | 52       | 52   | 52       | 52    | 52   | 52       | 52    | 52    | 52       | 52    | 52      | 52       | 52    | 52   | 52       | 52       | 52   | 52       | 22      | 52      | 52   | 52    | 52       | 52       | 52<br>72<br>72                                                                  | 52   | 52       | 52    | 52    | 52    | 52       |                 |
|             | FT W                |          | > (        | 0.0  | 0.0      | 0.0   | 0.0  | 0.0       | 0.0  | 0.0  | 0.0   | 0.0     | 0.0  | 0.0   | 0.0       | 0.0      | 0.0                                         | 0 0              | 0.0  | 0.0  |          | 0.0  | 0.0      | 0.0   | 0.0  | 0.0      | 0.0   | 0.0   | 0.0      | 0.0   | 0.0     | 0.0      | 0.0   | 0.0  | 0.0      | 0.0      | 0.0  | 0.0      |         | 0.0     | 0.0  | 0.0   | 0.0      | 0.0      | 0.0                                                                             | 0.0  | 0.0      | 0.0   | 0.0   | 0.0   | 0.0      | ALLOWABLE       |
|             |                     |          | ۲          | 0 4  | 50       | 54    | 57   | 59        | 64   | 99   | 88    | 73      | 75   | 8 78  | 200       | 85       | 87                                          | 88               | 14   | 96   | 23.62    | 103  | 106      | 106   | 901  | 110      | 113   | 2 2 2 | 120      | 122   | 127     | 129      | 132   | 136  | 139      | 141      | 146  | 148      | 150     | 2       | 157  | 091   | 164      | 167      | 169                                                                             | 174  | 176      | 178   | 183   | 185   | 88       |                 |
|             | WIDTH=22            | -        | Ļ          | 0 4  | 47       | 7 4 7 | 47   | 7 4 7     | 47   | 47   | 7 1   | 747     | 47   | 747   | 7 4 7     | 47       | 747                                         | 7 4              | 47   | 47   | 7 4      | 47   | 47       | 7 4 7 | 74   | 47       | 7 4 7 | 74    | 47       | 7 4 7 | 747     | 47       | 47    | 47   | 47       | 7 4 7    | 47   | 47       | / 4 / 7 | 47      | . 74 | 74    | 47       | 74       | 4 / 4 /                                                                         | 47   | 47       | 7 4 7 | 74    | , 74  | 47       | MINIMUM         |
| SIGN        |                     |          | >          | 0.0  |          | 0.0   | 0.0  | 0.0       | 0.0  | 0.0  | 0.0   | 0.0     | 0.0  | 0.0   |           | 0.0      | 0.0                                         | 0.0              |      |      |          |      | 0.0      | 0.0   | 0.0  |          | 0.0   |       |          | 0.0   | 0.0     | 0.0      | 0.0   | 0.0  |          | 0.0      |      |          | 0 0     |         | 0.0  |       | 0.0      | 0.0      | 0.0                                                                             | 0:0  | 2.0      | 2.0   | 2.1   | 2.2   | 2.3      | IS THE          |
|             | MDTH=20 F           | @ 10.    |            | 0 43 | 45       | 4 6 4 | 52   | 5.4       | 58   | 09   | 7.9   | 66      | 69   | 77    | 75        | 77       | <u>,</u>                                    | - C              | 9    | 88 8 | 00       | 94   | 96       | 96    | 080  | 001      | 103   | 201   | 109      | 11 11 | 115     | 118      | 120   | 124  | 126      | 128      | 132  | 135      | 130     | 141     | 143  | 0 4   | 149      | 152      | 40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>4 | 158  | 9/1      | 178   | 0 8   | 187   | 190      | RADIUS I        |
| ∠<br>∠      |                     |          | Lt         | 0 43 | 43       | 43    | 43   | 4 4 4 4 3 | 43   | 43   | 5 4 5 | 0 4 4 3 | 43   | 43    | 2 4 5 5 5 | 43       | 43                                          | ر<br>ا<br>ا<br>ا | 43   | 43   | 4 7 4 7  | 43   | 43       | 43    | 43   | 43       | 43    | 2 4 3 | 43       | 43    | 0 4 4 3 | 43       | 2 4 2 | 43   | 43       | 43       | 43   | 43       | 2 4 5   | 43      | 43   | 2 4 3 | 43       | 43       | 4 4 5 4 5 4 5                                                                   | 43   | 47       | 747   | 0 4 6 | 84    | 8 4      |                 |
| $\bigcirc$  | V PT V              |          | >          | 0.0  |          | 0.0   | 0.0  | 0.0       |      | 0.0  | 0.0   | 0.0     | 0.0  | 0.0   |           | 0.0      | 0.0                                         | 0.0              | 0.0  | 0.0  | 0.0      | 0.0  | 0.0      | 2.5   | 5.3  | 2.3      | 2.3   | 5.3   | 4.2      | 4.7   | 4.7     | 2.5      | 2.5   | 2.5  | 2.5      | 9.0      | 2.6  | 2.6      | 5.6     | 2.7     | 2.7  | / 8.  | 8.       | 80.0     | σ.<br>σ. σ                                                                      | 2.9  | 3.0      | 3.0   | 3.1   | 3.2   | 3.3      | LISTED          |
| 2 /         | # 19                | -6       |            | 39 ( | H        | 45 (  |      | 48        | +    | 54   | 200   | 209     | 62 ( | $\pm$ | 0 00      | +        | <u>                                    </u> | 7,5              | 2/2  | 79 ( | ν<br>2 α | 85 ( | 87       | [5]   | 101  | 161      | 161   | 101   | 161      | 161   | 161     | 161      | 161   | 161  | 161      | 161      | 161  | 161      | 10 12   | 161     | 161  | 101   | 161      | 161      | 161                                                                             | 165  | 891      | 0/1   | . 6/1 | . 6/1 | 182      | FE T.           |
| $\vdash$    | #HDTH               | 1        | Lt         | 39   | $\vdash$ | _     |      | _         | 1    | 39   | 65 67 | 39      | Н    | +     | +         | $\vdash$ | 339                                         | 55 G<br>60 F     | 39   | 39   | 200      | 39   | 39       | 72    | 7/02 | 69       | 89    | 55    | 54       | 62    | 20 00   | 59       | 58    | 56   | 55       | 54<br>57 | 52   | 52       | [C] C.  | 49      | 64   | 474   | 46       | 46       | ψ<br>τ<br>1                                                                     | 45   | 45       | 45    | 46    | 46    | 46 1     | $\geq$          |
|             |                     |          |            | 2 NC | $\perp$  | _     |      | _         | _    |      | _     | _       | Н    | _     | +         |          | _                                           | _                | +    |      | _        | _    |          | +     | _    | $\vdash$ | _     | _     | $\vdash$ | _     | _       | $\vdash$ | _     |      |          | _        | _    | _        | _       | $\perp$ |      | _     | $\vdash$ | _        | _                                                                               | _    | $\vdash$ | _     | _     | Н     | _        | VALUES          |
| DESIGN      | DESIGN<br>VFI OCITY | . 22     | 1 1        | +    | H        | +     |      | +         | +    |      | +     | +       | Н    | +     | +         | $\vdash$ |                                             |                  | +    |      | +        | +    | $\vdash$ |       | +    | H        | +     | +     | Н        | +     | +       |          | +     | +    | $\dashv$ | +        |      | $\vdash$ | +       | $\top$  |      | +     | Н        | $\dashv$ |                                                                                 | +    | $\vdash$ | +     | +     | H     | $\dashv$ | ≥<br>⊗          |
| DE          | DES<br>VFI (        | . "      | RADIUS(FT) | 7190 | 6821     | 6179  | 5897 | 5638      | 5177 | 4972 | 3//4  | 4432    | 4274 | 4125  | 385       | 3728     | 3610                                        | 3498             | 3285 | 3192 | 3000     | 2927 | 2866     | 2865  | 2768 | 2692     | 262   | 2486  | 242      | 2356  | 2295    | 2185     | 2130  | 2026 | 1976     | 1927     | 1833 | 1788     | 1/4     | 1657    | 1615 | 1532  | 1491     | 1450     | 1405                                                                            | 1327 | 1285     | 1241  | 1145  | 1085  | 964      | NOTE:<br>Lt, Lr |

SPECIFICATION REFERENCE

# TRANSITION CURVES - RURAL 55 MPH DESIGN SPEED

|         | AMPS                    | FT       | ٦         | 0     | 70       | 74   | 80       | 84         | 60   | 94       | 100   | 104   | 107  | 114  | 117      | 120          | 127  | 130      | 134   | 140     | 144      | 147        | 154  | 157   | 164     | 167      | 174   | 174          | 177   | 180            | 187     | 194   | 200         | 204   | 210     | 214           | 217   | 224     | 227      | 234  | 237  | 240  | 247          | 250      | 254    |        |
|---------|-------------------------|----------|-----------|-------|----------|------|----------|------------|------|----------|-------|-------|------|------|----------|--------------|------|----------|-------|---------|----------|------------|------|-------|---------|----------|-------|--------------|-------|----------------|---------|-------|-------------|-------|---------|---------------|-------|---------|----------|------|------|------|--------------|----------|--------|--------|
|         | INTERCHANGE RAMPS WIDTH | 2        | Lt        | 67    | <u> </u> | 67   | 67       | 67         | 67   | 29       | /9    | 67    | 67   | 67   | 29       | 67           | 67   | 67       | 67    | 67      | 29       | 67         | 67   | 67    | 67      | 67       | /9    | 67           | /9    | 67             | 67      | 67    | /9          | 67    | 67      | 29            | 67    | 67      | 67       | /9   | 29   | 67   | /9           | 29       | 67     | 1      |
| MAX.    | SCHAN<br>WIF            | F        | الر       | 63    | 99       | 73   | 76       | 79         | 85   | 88       | 9.    | 86    | 101  | 107  | 110      | 113          | 120  | 123      | 126   | 132     | 135      | 139        | 145  | 148   | 154     | 157      | 164   | 164          | 167   | 170            | 176     | 182   | 189         | 192   | 198     | 201           | 204   | 211     | 214      | 220  | 223  | 226  | 233          | 236      | 239    |        |
| %<br>N  | NTE                     | 9        | Lt        | 63    | 63       | 63   | 63       | 63         | 63   | 63       | 63    | 63    | 63   | 63   | 63       | 63           | 63   | 63       | 63    | 63      | 63       | 63         | 63   | 63    | 63      | 63       | 63    | 63           | 63    | 63             | 63      | 63    | 63          | 63    | 63      | 63            | 63    | 63      | 63       | 63   | 63   | 63   | 63           | 63       | 63     | 4 1    |
| III     | FT                      | _        | > (       | 0.0   | 0.0      | 0.0  | 0.0      | 0.0        | 0.0  | 0.0      | 0.0   | 0.0   | 0.0  | 0.0  | 0.0      | 0.0          | 0.0  | 0.0      | 0.0   | 0.0     | 0.0      | 0.0        | 0.0  | 0.0   | 0.0     | 0.0      | 0.0   | 0.0          | 0.0   | 0.0            | 0.0     | 0.0   | 0.0         | 0.0   | 0.0     | 0.0           | 0.0   | 0.0     | 0.0      | 0.0  | 0.0  | 0.0  | 0.0          | 0.0      | 0.0    | =      |
|         | WIDTH=72                | @ 12'    | ١.        | 107   | 112      | 118  | 128      | 134        | 144  | 150      | 155   | 166   | 171  | 182  | 187      | 192          | 203  | 208      | 214   | 224     | 230      | 235        | 246  | 251   | 262     | 267      | 278   | 278<br>278   | 283   | 288            | 299     | 310   | 320         | 326   | 336     | 342           | 347   | 358     | 363      | 374  | 379  | 384  | 395          | 400      | 406    | 4,     |
| USING   | MIDI                    | 2        | t]        | 107   | 107      | 107  | 107      | 107        | 107  | 107      | 107   | 107   | 107  | 107  | 107      | 107          | 107  | 107      | 107   | 107     | 107      | 107        | 107  | 107   | 107     | 107      | 107   | 107          | 107   | 107            | 107     | 107   | 107         | 107   | 107     | 107           | 107   | 107     | 107      | 107  | 107  | 107  | 107          | 107      | 107    | 107    |
|         | L F                     | <u> </u> | ≥ (       | 0.0   | 0.0      | 0.0  | 0.0      | 0 0        | 0.0  | 0.0      | 0 0   | 0.0   | 0.0  | 0.0  | 0.0      | 0 0          | 0.0  | 0.0      | 0.0   | 0.0     | 0.0      | 0 0        | 0.0  | 0.0   | 0.0     | 0.0      | 0.0   | 0.0          | 0.0   | 0.0            | 0.0     | 0.0   | 0.0         | 0.0   | 0.0     | 0.0           | 0.0   | 0.0     | 0.0      | 0.0  | 0.0  | 0.0  | 0.0          | 0.0      | 0.0    | _<br>C |
| (RURAL) | WIDTH=48 FT             | 0 12     | ١         | 08    | 84       | 92   | 96       | 100        |      | 112      | +     |       | 128  |      | 140      | _            | +    | -        | 164   |         | 172      | 176        | +    | 188   |         |          | 208   | _            | +     |                | +       | 232   | 240         | 244   | 252     | 256           | _     | 268     | Q   (    | -    | 284  | _    | 296          | 300      | 304    | ας     |
| 1 1     | WIDTH                   | 2        | t,        | 0 8   | 80       | 8 8  | +        | 80         | 8 8  | 80       | 200   | 08    | 80   |      | 80       | +            | +    | 08       | 08 08 | +       | H        | 08 08      | +    | 08 6  | +       |          | 8 8   | 08 8         | +     | 08 80          |         | 8 8 8 | 000         | 08 8  |         | +             | 08 80 | Н       | 08       | 80   | _    | 08 6 | 000          | 80       | 80     | 0      |
| MPH     |                         |          |           | +     | $\vdash$ |      | $\vdash$ | +          | +    | $\vdash$ | +     | _     | 0.0  | _    | $\vdash$ | 0.0          | +    | _        | 0.0   | $\perp$ | $\sqcup$ | +          | ++   | _     | $\perp$ | $\vdash$ | 0.0   | 0.0          | 0.0   |                | $\perp$ | 0.0   | +           | _     | $\perp$ | $\rightarrow$ | 0.0   | $\perp$ | 0.0      | 0.0  | 0.0  | _    | 0.0          | 0.0      | 0.0    | 00     |
|         |                         | @ 12.    |           | +     | ) 99     | _    | 64 (     | _          | +    | $\vdash$ | +     |       | 98   |      | $\vdash$ | +            | +    | +        | 1107  | +       | Н        | 118        | +    | 126 ( | +       | 134 (    | +     | +            | _     | 144            | +       | +     | 0 0         | 163 ( | +       | 7             | 74 (  | 6       | 182      | +    | 190  | +    | 198          | $\vdash$ | 203 (  | 208    |
| 90      | WIDTH=24                |          |           | 54    | 54       | 4 4  | 45       | 40.0       | t 40 | 54       | 4 4   | 4     | 45   | 4 4  | 54       | 4 4          | 1 1  | 1        | 1 4 5 | 54 1    | 54       | 40         | 40   | 40    | 54      | 40       | 54    | 40           | 54 1  | 54 1           | 40      | 40    | 40 4        | 40    | 54      |               | 40 40 | 1 1     | 40       | 1 4  | 54   | 40.0 | 40.04        | 54 2     | 54   2 | C V =  |
|         | FT W                    |          |           |       | 0.0      | 0.0  | 0.0      | 0 0        | 0.0  | 0.0      | 0.0   | 0.    | 0.0  | 0.0  | 0.0      | 0.0          | 0.0  | 0.0      | 0.00  | 0.0     | 0.0      | 0 0        | 0.   | 0.0   | 0.      | 0.0      | 9 0   | 0.0          | 0.0   | 0.0            | 0.0     | 0.0   | 0.0         | 0 0   | 0.0     | 0. 0          | 0.0   | 0.      | 0.0      | 0.   | 0.0  | 0.0  | 0.0          | 0.0      | <br>0. | c      |
| SPEED   |                         |          |           | 0 64  | 52 C     | 4 6  |          | \<br>\<br> |      | 0 69     | 7 0   | - 9   | 0 0  | 4    | $\vdash$ | 88 2         | Н    | +        |       | +       | $\vdash$ | 108        | +    | 115   | +       |          | 0 00  | +            | » C   | 2 2            |         | +     | 145         | 150 0 | 14      | _ (           | 0 0   | 1 4     | $\vdash$ | 2 0  | 74   | 9/2  | 2 / S        | $\vdash$ | 186 0. | 0 081  |
| SIGN    | WIDTH=22                | 1        |           | 49    | $\vdash$ | 49 5 | H        | 49 6.      |      | $\vdash$ | 49    | 0 0   | 6 0  | 0 0  | 6        | 8 0 4        |      | 64       | 49 98 | Ė       | H        | 49 49 1    | +    | 000   | 49 12   | $\vdash$ | 9 6   | 000          |       | 49 13<br>49 13 | + +     | + +   | 4 6 4 6 7 1 | 49 16 |         | 6 5           | 6 6   | 6       | 91 6     | 9 17 | 6    | 000  | b 0          | 6        | - 6    | -<br>- |
| ISI-    | - =                     |          |           | 0.0   |          | 0.0  | $\vdash$ | 0.0        | _    | $\vdash$ |       | -     | 0 0  | 0 0  | 0        | 0 0          | +    | _        | 0.0   | $\perp$ | $\vdash$ | $\perp$    | ++   | 0.0   | $\perp$ | $\vdash$ | 0.0   | 0 0          |       | 0 0            | $\perp$ | ++    | 0.0         | 0.0   | $\perp$ | 0.0           | 0.0   | 0       |          | 0 0  | 0    | 0 0  | 0 0          | 0.       | 0.     | _<br>_ |
| <       | WIDTH=20 FT             | 10.      |           | 45 0  | $\vdash$ |      | +        | +          | 0 09 | $\vdash$ | +     | +     | 2 0  | + 9  | 80       | 0 6          | +    | $\dashv$ | +     | +       | Н        | +          | +    | 2 2   | , 6     | 7        | 4 9   | 9 9          | 8 0.0 | 3 0            | 191     | , 6   | 7 4         | 0 α   | 140 0   | W 1           | 2 2   | o       | 2 2      | 1 9  | +    | 160  | υ ιδ<br>Ο Ο  | 0 /      | 0      | - 5    |
| FOR     | WIDTH:                  |          |           | +     | $\vdash$ | _    | $\vdash$ | +          | 45 6 | $\vdash$ | +     | 45 69 |      | 5 7  | 2        | ω ω<br>ω ω   |      | 5 87     | 45 89 |         | Н        | +          | ++   | 45 10 | +       | 45 11    | 2 5   | ۍ ر<br>۲ = ۲ | 45 11 | 5 12           | ++      |       | 45 13       | 45 13 | +       | 45 14         | 5 14  | 45 14   | 5 7      | 5 E  | 5    | 5 4  | 5 5          | 5 16     | 5 16   | 7 1    |
|         |                         | 5        |           |       |          | 0 45 |          |            |      | $\vdash$ | 0 0   | -     |      | 0 0  | 4        | 0 0          | 0 0  | 0 45     | 0 0   |         | Н        | _          | +    | 00    |         |          | 4 4   | 5 4          | 4 4   | 4 4            | 4 45    | 4 4   | U U         | 7 4   | 6 4     | 6 4           | 9 9   | 6 4     | 4 7      | 4 4  | 7    | 80 0 | 0 00         | 9        | 9      | 4      |
| TOR     | 9                       |          |           | 0.0   | 0        | 0 0  | 0        | 0 0        | 0    | 0 0      | o   c | 0     |      | 0 0  | 0        | 0 0          | 0    | 0        | o c   |         | H        | 0.0        | +    | 0 0   | 0       |          | A 4   | 2 .          | 6 2.  | 5 2.           | 2.2     | 2 6 6 | 2 7.        | 2,2   | 2 2     | 6 2.          | 2 2   | 2 2     | 2 2      | 2 6  | 5.   | 2.2  | 2 2          | 2.       | 7 2.   | ر<br>ر |
| FACTORS | ₩IDTH=                  | 10       |           | 0 40  | 4.5      | 444  | Н        | +          | 54   | $\vdash$ | 280   | +     | 0 64 | 3 8  | 2        | 72           | 76   | $\dashv$ | 8 6   | +       | Н        | 88 6       | +    | 94    | +       | $\vdash$ | 2   2 | 2 2          | 17 17 | 17 7           | 1 1 2   | 1 2 2 | 2 2         | 2 1   | 17(     | 2 1           | 0 1   | 3 17    | 171      | 17   | 1    | 5 5  | 2 2          | , 17     | 17     | 170    |
|         |                         |          | _         | 0 4   | $\vdash$ | 40   |          | 404        |      | -        |       | 4     |      | 4 4  |          | 40           | +    | 40       | 0 4 0 | +       | Н        | 04         | ++   | 0 4   | +       | $\vdash$ | ++    | 39           | 20    | 64             | 63      | 10 3  | 550         | 55    | 56      | 55            | 55    | 5.      | 52       | 51   | 20   | 34   | 4 4          | 47       | -4     | -V     |
| DESIGN  | ×<br>Z ::               |          |           | 2.0   | 2.1      | 2.2  | 2.4      | 2.5        | 2.7  | 2.8      | 3.0   | 3.1   | 3.2  | 3.4  | 3.5      | 3.6          | 3.8  | 3.9      | 4.0   | 4.2     | 4.3      | 4 4<br>4 6 | 4.6  | 7.4   | 4.9     | 5.0      | 5.2   | 5.2          | 5.3   | 5.4            | 5.6     | 5.00  | 0.0         | 6.1   | 6.3     | 6.4           | 6.6   | 6.7     | 8.0      | 7.0  | 7.1  | 7.2  | \<br>\<br>4. | 7.5      | 7.6    | 777    |
|         | DESIGN<br>VELOCITY      | 09=      | ADIUS(FT) | 12000 | 8048     | 7654 | 6965     | 6661       | 6121 | 5879     | 5444  | 5247  | 5063 | 4725 | 4571     | 4424<br>4286 | 4155 | 4030     | 3911  | 3690    | 3587     | 3488       | 3303 | 3216  | 3053    | 2975     | 2866  | 2865         | 2759  | 2692           | 2565    | 2445  | 2332        | 2277  | 2173    | 2122          | 2072  | 1974    | 1925     | 1830 | 1782 | 1735 | 1638         | 1588     | 1537   | 1100   |

TRANSITION CURVES - RURAL 60 MPH DESIGN SPEED

SPECIFICATION REFERENCE

NOTE: Lt,Lr& w VALUES IN FEET. LISTED RADIUS IS THE MINIMUM ALLOWABLE RADIUS FOR THE CORRESPONDING E,Lt,Lr,AND w VALUES.

REV. 1/07 802.42

|        | MPS               | L                |          | 0 6      | 73                                      | 77   | 84     | 00    | 94                                    | 97    | 104  | 108   | 115 | 118   | 122   | 129   | 132  | 130             | 142    | 146  | 149  | 156        | 160  | 163          | 170      | 174     | 777    | 184    | 187  | 191                | 198   | 201   | 201                   | 205     | 208   | 215  | 219   | 225      | 229  | 232   | 239  | 243   | 246          | 253   | 257   | 260  | 264           | 270    | 274    | TC-5.0′                                | 1      |
|--------|-------------------|------------------|----------|----------|-----------------------------------------|------|--------|-------|---------------------------------------|-------|------|-------|-----|-------|-------|-------|------|-----------------|--------|------|------|------------|------|--------------|----------|---------|--------|--------|------|--------------------|-------|-------|-----------------------|---------|-------|------|-------|----------|------|-------|------|-------|--------------|-------|-------|------|---------------|--------|--------|----------------------------------------|--------|
|        | E RAI             | _   œ            |          | 0 8      | 9 9                                     | 2 2  | 2 2 3  | 9 9   | 2,0                                   | 2/2   | 2 2  | 2 5   | 2 2 | 70    | 2/2   | 2 2   | 2    | 2 5             | 2 2    | 70   | 2 5  | 2 2        | 70   | 9 8          | 70       | 70      | 2 5    | 2 2    | 70   | 2 2                | 202   | 2/2   | 2 2                   | 20      | 2 2   | 70   | 2 5   | 2 2      | 70   | 2 5   | 2 2  | 20    | 2 5          | 70,   | 70    | 2 6  | 5 6           | 5 6    | 2 5    | ?                                      |        |
|        | INTERCHANGE RAMPS | MDT FT           |          | 08       | 9 69                                    | 72   | 6/2    | 82    | 68                                    | 92    | 088  | 102   | 108 | 112   | 115   | 121   | 125  | 171             | 134    | 138  | 141  | 147        | 151  | 154          | 160      | 164     | 167    | 174    | 17.7 | 180                | 187   | 190   | 190                   | 193     | 196   | 203  | 206   | 213      | 216  | 219   | 226  | 229   | 232          | 239   | 242   | 245  | 249           | 255    | 258    | 262  <br>VALUES                        | į      |
| MAX.   | NTER(             | 15               |          | 0 8      | 99                                      | 99   | 99     | 99    | 99                                    | 99    | 99   | 99    | 99  | 99    | 99    | 99    | 99   | 90              | 99     | 99   | 99   | 99         | 99   | 99           | 99       | 99      | 99     | 99     | 99   | 99                 | 99    | 99    | 99                    | 99      | 99    | 99   | 99    | 99       | 99   | 99    | 99   | 99    | 99           | 99    | 99    | 99   | 99            | 99     | 99     | < ا                                    | :      |
| X      | F                 |                  | *        | 0.0      | 0.00                                    | 0.0  | 0.0    | 0.0   | 0.0                                   | 0.0   | 0.0  | 0.0   | 0.0 | 0.0   | 0.0   | 0.0   | 0.0  | 0.0             | 0.0    | 0.0  | 0.0  | 0.0        | 0.0  | 0.0          | 0.0      | 0.0     | 0.0    | 0.0    | 0.0  | 0.0                | 0.0   | 0.0   | 0.0                   | 0.0     | 0.0   | 0.0  | 0.0   | 0.0      | 0.0  | 0.0   | 0.0  | 0.0   | 0.0          | 5.0.  | 0.0   | 0.0  | 0.0           | 0.0    | 0.0    | Lt, Lr, AND                            | :      |
| 00     |                   | 12.              | 1 .      | 0 9      | 71 8                                    | 23 ( | 34     | 46    | 51 (                                  | 57 (  | 70   | 4 0 0 | 35  | 06    | 96    | 07 70 | 513  | 0 4             | 29 (   | 35 ( | 40   | 52 (       | 57 ( | 59           | 74 (     | 08:     | 285    | 96     | 02 ( | 07 (013            | 0 619 | 24 0  | 24 (                  | 30 (    | 35 (  | 47   | 52    | 000      | ) 69 | 44    | 98   | 169   | 97 (0        | 088   | 14    | 61:  | 25 5          | 36 (   | 14,    | 4/   ,   ,   ,   ,   ,   ,   ,   ,   , | ;      |
| G<br>E | WIDTH=72          | 14.              | - 1      | 0 9      | 12 12                                   | 12 2 | 123    | 1 2 1 | 12                                    | 2 2   | 7 2  | 27 5  | 1 2 | 12 19 | 21 5  | 12    | 21 5 | 7 5             | 1 5    | 12 2 | 12 2 | 1 2 2      | 12 2 | 12 2         | 12       | 12 2    | 2 5    | 1 2    | 12 3 | 2 5                | 12    | 12 3  | 7 2 3                 | 12 3    | 2 2 2 | 12 3 | 12 3  | 7 Z      | 12 3 | 12 3  | 12   | 12    | 2 c c        | 1 2   | 12 4  | 12 : | 4 4           | 12     | 12 4   | IZ 44<br>NG E,                         |        |
| JSING  |                   |                  | *        | 0.0      | o: 0:                                   | 0 0  | 0.0    | ) c   | 0.                                    | 0 0   | 0 0  | 0.0   | 0.0 | 0.    | 0 0   | 0     | 0.0  | )<br> <br> <br> | 0 0    | 0.   | 0 0  | 0          | 0.0  | ) c          | 0.       | 0.      | 0 0    | 0.0    | 0.   | 0 0                | 0.    | 0 0   | 0 0                   | 0.      | 0 0   | 0.   | 0.0   | 5 0      | 0.   | 0 0   | 0.   | 0.    | o c          | 5 0.  | 0.    | 0. ( | 5 C           | 0      | 0.0    | - I o.                                 | ;      |
| AL) U  | 48 FT             | WIDTH)           | <u> </u> | 0 0      | 88                                      | 0 0  | - 5    | သ စ   | 4                                     | 0 0   | 7 9  | 0 5   | 1 6 | 5     | 0 0   | 55 0  | 0    | 4 α<br>Ο C      | 2 2    | Н    | 180  | +          | H    | 70/19/       | $\vdash$ | 210 0   | 4 ¤    | 22.0   | 27 0 | 31 0               | 29 0  | 5 2   | 12 0                  | 0 21    | 52 0  | 0 00 | 264 0 | 3 5      | 0 // | 281   | 0 68 | 294 0 | 298 0        | 306 0 | 0 01  | 4 ;  | 19<br>23<br>0 | 27 0   | 31     | CORRESPONDING                          | ;<br>5 |
| RURA   |                   | LANE W           | <b>ا</b> | Н.       |                                         |      |        | 4 4   | - 4<br>- E                            | 4 2   | 4 4  | 4 13  | t 4 | 4 14  | 4 4   | t 4   | 4 16 | 7 7             | 1 4    | 17   | 4 6  | + 4<br>5 8 | 4 15 | 4 4          | 4 20     | 4 2     | 4 2    | 4 4 22 | 4 22 | 4 4                | 4     | 4 2/2 | 4 22                  | 4 24    | 4 2 2 | 4 26 | 4 26  | 4 4      | 4 27 | 2 2 2 | 4 28 | 4 28  | 4 2.3        | 4 3   | 4     | 4    | 4 4<br>3 5    | 4 32   | 4 5    | 74 LV                                  |        |
|        | H                 | AT L             | Ľ        | $\vdash$ | α α<br>ο ο                              | _    | 000    |       | 0                                     | 00    | 0 0  | 0 0   | 0 0 | 0     | 000   | 0 0   | 0 0  | ρα              | 0 0    | 8    | 0 0  |            | 0 0  | ω (α<br>Ο (C | 8        | 0 6     | 0 0    | 0 0    | 0    | 00                 | 8     | 000   | 0 80                  | 0 (     | 00    | 8    | 0 0   | 0 0      | 0    | 0 0   | 0    | 0 (   | χ (α<br>Ο (ς | 0 0   | 0     | 0 (  | ω α<br>Ο C    | 0 0    | 0 0    | FOR T                                  |        |
| MPH    | 24 FT             | LANES<br>12'     | ž ,      | 0 0      | +                                       | 0 0  | +      | 0 6   | 0 0                                   | 0 0   | 9 0  | 0 0   | 0.0 | 0.    | 0 0   | - 4   |      | න ද             | 0.0    | 0    | 0 0  | 0 0        | 0.0  | 32 0.0       |          | $\perp$ | 43 0.0 | 0 0    | 1 0. | 4 6                | 60 0. | 2 0   | 2 0                   | ن<br>0. | 0 0   | .4   | 0 0   | 0 0      | .0   | 87    | 3 0  | 9     | 99 0.        | 0.4   | 07 0. | 0 0  | 5 C           | 0 8    | 21 0   | ZZ4  U.                                |        |
| 65     | 1 1 1             | OF _             | -        | Н.       | 29                                      | 6 6  | 9      |       | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | Ò     | 0 00 | 00 d  | n 6 | 6     | 88 6  | 2 2   | 0 :  | 5 5             | = =    | 1    | (2)  | 2 (2       | 17   | 2) (2)       | 13       | 21      | 7 7    | 4      | 31   | (1) (1)<br>(1) (1) | 10    | 91 5  | 1 9                   | 91      | 9 (   | 11   | ()    | 2 (2     | 31   | \$ 5  | 2 0  | 100   | 21 2         | 1 2   | 2     | 5 5  | 5 7.          | 2 1    | 2 2    | _                                      |        |
| 0F     | ×   i             | (NUMBER          | L        | 0 (      | 2 2                                     | 26   | 26     | 2 2   | 26                                    | 26    | 26   | 26    | 200 | 26    | 26    | 200   | 56   | 2 2             | 26     | 26   | 26   | 200        | 26   | 7 2          | 56       | 56      | 26     | 26     | 26   | 26                 | 56    | 26    | 200                   | 26      | 26    | 56   | 26    | 200      | 26   | 56    | 26   | 26    | 2 2          | 56    | 2 56  | 56   | 200           | 56     | 26     | ALLOWABLE                              |        |
| ED     | ابما              |                  | >        | 0.0      | 0.0                                     | 0.0  | 0.0    | 5 0   | 0.0                                   | 0.0   | 0.0  | 0.0   | 0.0 | 0.0   | 0.0   | 0.0   | 0.0  | ١.              | 0.0    | 0.0  | 0.0  | 0.0        | 0.0  | 0.0          | 0.0      | 0.0     | 0.0    | 00     | 0.0  | 0 0                | 0.0   | 0.0   | 0.0                   | 0.0     | 0.00  | 0.0  | 0.0   | 0.0      | 0.0  | 0.0   | 0.0  | 0.0   | 5 O          | 0.0   | 0.0   | 0.0  | 5 0           | 0.0    | 0.0    | 1                                      | - 1    |
| SPE    | WIDTH=22          | EQUIVALENTS      | ار       | 0 (      | 54                                      | 57   | 62     | 64    | 200                                   | 72    | 10   | 8 8   | 85  | 87    | 90    | 95    | 86   | 100             | 105    | 108  | 13   | 116        | 118  | 121          | 126      | 128     | 131    | 136    | 139  | 141                | 146   | 149   | 4<br>4<br>6<br>4<br>8 | 151     | 154   | 159  | 162   | 167      | 169  | 172   | 177  | 180   | 182          | 187   | 190   | 192  | 195           | 200    | 200    | WINIMUM                                |        |
|        | M                 | <b>√</b>   00  ∧ | Lt       | 0 (      | 52                                      | 52   | 52     | 52    | 52                                    | 52    | 52   | 52    | 52  | 52    | 52    | 52    | 52   | 52              | 52     | 52   | 52   | 52         | 52   | 52           | 52       | 52      | 52     | 52     | 52   | 52                 | 52    | 52    | 52                    | 52      | 52    | 52   | 52    | 52       | 52   | 52    | 52   | 52    | 52           | 52    | 52    | 52   | 52            | 52     | 52     | THE MI                                 |        |
| ESIGN  | [ ] ,             | - 1              | >        | 0.0      | 0.0                                     | 0.0  | 0.0    | 0 0   | 0.0                                   | 0.0   | 0.0  | 0.0   | 0.0 | 0.0   | 0.0   | 0.0   | 0.0  | 0 0             | 0.0    | 0.0  | 0.0  | 0.0        | 0.0  | 0.0          | 0.0      | 0.0     | 0.0    | 0.0    | 0.0  | 0.0                | 0.0   | 0.0   | 0.0                   | 0.0     | 0.0   | 0.0  | 0.0   | 0.0      | 0.0  | 0.0   | 0.0  | 0.0   | 0 0          | 0.0   | 0.0   | 0.0  | 0 0           | 0.0    | 0.0    | <u>.</u> S                             | 2      |
| A      | WIDTH=20          | SOFTWARE         | ,   _    | 10       | 4 4                                     | 52   | 56     | 59    | 63                                    | 99    | 00/  | 73    | 77  | 8     | 82    | 8 0   | 89   | 20 0            | 96     | 86   | 100  | 105        | 107  | 130          | 114      | 117     | 119    | 124    | 126  | 128                | 133   | 135   | 135                   | 138     | 140   | 145  | 147   | 152      | 154  | 156   | 161  | 163   | 166          | 170   | 173   | 175  | 180           | 182    | 184    | L ZUB                                  | ;<br>į |
| OR     |                   |                  | Ļ        | 0 !      | 4 4                                     | 4 4  | 74     | 4 4   | 47                                    | 7 4 7 | 4 4  | 4 7   | ţ   | 47    | 7 4 7 | 4 4   | 4 7  | 4 4             | 4 4    | 47   | 4 7  | t 4        | 47   | 4 4          | 47       | 47      | 47     | t 4    | 47   | 7 4                | 47    | 7 4 7 | 4 4                   | 47      | 7 4   | 47   | 47    | 4 4      | 47   | 4 7   | 47   | 47    | 4 4          | 47    | 47    | 4    | 4 4           | 47     | 47     | S.1 52                                 |        |
| S F(   | 18 FT             | DESIGN           | *        | 0.0      | 0.0                                     | 0.0  | 0.0    | 0.0   | 0.0                                   | 0.0   | 0.0  | 0.0   | 0.0 | 0.0   | 0.0   | 0.0   | 0.0  | )<br>)<br>)     | 0.0    | 0.0  | 0.0  | 0.0        | 0.0  | 0.0          | 0.0      | 0.0     | 0.0    | 0.0    | 0.0  | 0.0                | 0.0   | 0.0   | 2.4                   | 2.5     | 2.5   | 2.5  | 2.5   | 2.5      | 2.6  | 2.6   | 2.6  | 2.7   | 2.7          | 2.7   | 2.8   | 2.8  | 2.0           | 2.9    | 2.9    |                                        |        |
| ORS    | "DTH= 1           | ©<br>0           | _        | 0        | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 74   | 2 2    | 53    | 57                                    | 59    | 63   | 65    | 200 | 72    | 74    | 0 82  | 80   | 82              | 98     | 88   | 90   | 95         | 97   | 90           | 103      | 105     | 107    | = =    | 114  | 116                | 120   | 122   | 191                   | 191     | 191   | 191  | 191   | <u> </u> | 191  | 191   | 191  | 191   | 191          | 191   | 191   | 191  | 191           | 191    | 192    | IB/                                    |        |
| ACT    | MIC               |                  | Lt       | 0 ;      | 42                                      | 42   | 42     | 42    | 42                                    | 42    | 42   | 42    | 42  | 42    | 42    | 42    | 42   | 42              | 42     | 42   | 42   | 42         | 42   | 42           | 42       | 42      | 42     | 42     | 42   | 42                 | 42    | 42    | 99                    | 65      | 64    | 62   | 61    | 0 65     | 28   | 58    | 56   | 55    | 45           | 53    | 52    | 51   | 51            | 49     | 49     | SO I                                   | - 1    |
| L<br>Z | ,                 | — ·<br>≻         | E(%)     | S S      | 2.0                                     | 2.2  | 2.4    | 2.5   | 2.7                                   | 2.8   | 3.0  | 3.1   | 3.3 | 3.4   | 3.5   | 3.7   | 3.0  | υ. 4<br>υ. σ    | 7      | 4.2  | 5.4  | 4.5        | 9.4  | 4 4<br>√. α  | 6.4      | 5.0     | 7.7    | 5.3    | 5.4  | 5.5                | 5.7   | 0.0   | 0.00                  | 5.9     | 6.0   | 6.2  | 6.3   | 6.5      | 9.9  | 6.7   | 0.9  | 7.0   | 7.1          | 7.3   | 7.4   | 7.5  | 7.6           | 7.8    | 7.9    | VALUES                                 |        |
| DESIGN | DESIGN            | VELUCII Y<br>=65 |          |          | 9566<br>9083                            |      | $\top$ |       |                                       |       |      |       |     | Ħ     | 1     | 1     |      |                 | $\top$ | П    |      |            | П    |              | Ħ        |         |        |        |      |                    | П     |       |                       |         |       | Ħ    | 1     | $\top$   | П    |       |      |       |              |       | Ħ     |      |               | $\top$ | $\top$ | _ ≥                                    | ,      |

SPECIFICATION REFERENCE

TRANSITION CURVES - RURAL 65 MPH DESIGN SPEED

VIRGINIA DEPARTMENT OF TRANSPORTATION

REV. 1/07

|         | RAMPS       | H                                                                    | دً .         | 0 1      | 79          | 83  | 87     | 90     | 98   | 102      | 105                | 113   | 120   | 124  | 128      | 132         | 139  | 143  | 150        | 154  | 158    | 162            | 169    | 173   | 180                                     | 184    | 188            | 195  | 199        | 207    | 210            | 218  | 222        | 229    | 237      | 240    | 244         | 244    | 252    | 255        | 263        | 267        | 274       | 278            | 285     | 289    | 293 |
|---------|-------------|----------------------------------------------------------------------|--------------|----------|-------------|-----|--------|--------|------|----------|--------------------|-------|-------|------|----------|-------------|------|------|------------|------|--------|----------------|--------|-------|-----------------------------------------|--------|----------------|------|------------|--------|----------------|------|------------|--------|----------|--------|-------------|--------|--------|------------|------------|------------|-----------|----------------|---------|--------|-----|
|         | 3E RA       | α                                                                    | ±            | 0 1      | 75          | 75  | 75     | 75     | 75   | 75       | 75                 | 75    | 75    | 75   | 75       | 75          | 75   | 75   | 75         | 75   | 75     | 75             | 75     | 75    | 75                                      | 75     | 75             | 75   | 75         | 75     | 75             | 75   | 75         | 75     | 75       | 75     | 75          | 75     | 75     | 75         | 75         | 75         | 75        | 75             | 75      | 75     | 7   |
| MAX.    | INTERCHANGE | WIDTH<br>FT T                                                        | د .          | 0 8      | 75          | 0/  | 82     | 98 8   | 93   | 96       | 100                | 107   | = = = | # 12 | 121      | 125         | 132  | 136  | 139        | 146  | 150    | 153            | 160    | 164   | 168                                     | 175    | 200            | 185  | 189        | 196    | 200            | 207  | 210        | 217    | 224      | 228    | 232         | 232    | 239    | 242        | 249        | 253        | 260       | 264            | 271     | 274    | 010 |
|         | INTER       | Ä                                                                    |              | 0 8      | 72          | 72/ | 72     | 72     | 72   | 72       | 72 / 2             | 72    | 72    | 72   | 72       | 72          | 72   | 72   | 72 /2      | 72   | 72     | 72             | 72     | 72    | 72/                                     | 72     | 72             | 72   | 72         | 72     | 72             | 72   | 72         | 12 2   | 72       | 72     | 72/2        | 72     | 72     | 72         | 72         | 72         | 72        | 72             | 72      | 72     | 72  |
| 8 %     | 14          |                                                                      | >            | 0.0      | 0.0         | 0.0 | 0.0    | 0 0    | 0.0  | 0.0      | 0.0                | 0.0   | 0.0   | 0.0  | 0.0      | 0.0         | 0.0  | 0.0  | 0.0        | 0.0  | 0.0    | 0 0            | 0.0    | 0.0   | 0.0                                     | 0.0    | 0 0            | 0.0  | 0.0        | 0.0    | 0 0            | 0.0  | 0.0        | 0.0    | 0.0      | 0.0    | 0.0         | 0.0    | 0.0    | 0.0        | 0.0        | 0.0        | 0.0       | 0 0            | 0.0     | 0.0    | -   |
| E E     |             | 10,                                                                  |              | $\vdash$ | 126         | +   | 38     | 4 C    | 156  | 162      | 168                | 180   | 19.5  | 198  | $\vdash$ | 210         | 222  | 228  | 234        | +    | 252    | 258            | 270    | 276   | 782                                     | 594    | 2002           | 312  | 318        | 330    | 336            | 348  | 354        | 366    | 378      | 384    | 062         | 390    | 102    | 117        | ±14<br>170 | 126        | 2, 28, 28 | 444            | 456     | 462    | -   |
| USING   | WIDTH=72    | ۲                                                                    | Lt           | Н,       | 07 02       | Ŧ,  | 20 1   | 20 7   | 20 1 | 20 ,     | 20 20              | +     | 20 %  | +    | -        | 20 %        | 20 2 | 20 2 | 07 02      | 20 2 | 20 2   | 200            | 20 2   | 20 20 | 20 20                                   | 20 2   | 200            | 20   | 20 20      | 20     | 200            | 20   | 20 02      | 202    | 20 20    | 20 3   | 20 20       | 20     | 20 2   | 20 20      | 20 4       | 20 4       | 20 4      | 20 20          | +       | 20 4   |     |
|         |             |                                                                      | *            | <u> </u> |             | 5 0 | 0.     | 0 0    | 0.   | 0.0      | 0.0                | 0     | 0.0   | 0.0  | 0.       | 0.0         | 0.   | 0.0  | 0.0        | 0.   | 0.     | 0 0            | 0.     | 0 0   | 5                                       | 0.     | 0.0            | 0.0  | 0 0        | 0.     | 0 0            | 0.   | 0 0        | 0.0    | 5 0      | 0 0    | )<br>)<br>) | 0 0    | 0.0    | 0.0        | 5 0        | 0 0        | 0 0       | 0.0            | 0.      | 0 0    |     |
| (RURAL) | WIDTH=48 FT | LANE WIDTH)                                                          | 1            |          | 90          | +   | $\Box$ | 08 0.  | 7    | 22       | 6. 12<br>0 0       | 55 0. | 0 0   | 149  | 0.0      | 0 0         |      | 7 :  | 9/1        |      |        | 94             | +      | 0 0   | 7 8                                     | 21 0.  | 50.0           | 34 0 | 39 0.      | 8      | 52 0.          | 51.0 | 0 0.       | 75 0.0 | 2 42     | 38     | 33 0.       | 93 0.  | 200    | 90 1       | 5 0.0      | 0 0        | .00       | 0 0            | 72 0    | 0 0    |     |
|         | /IDTH:      | ANE «                                                                | 1            | H        | +           | +   |        | +      | 11   | 21 2     | 2 0                | 2 5   | 2 2   | +    | 0        | 0 (         | 16   | 1)   | ) (        | 0 18 | 38     | 0 0            | 20     | 20    | 2 2                                     | 0      | 0 0            | 0 2  | 2 2        | 0 24   | 2 2            | 2 2  | 26         | 200    | 287      | 28     | 200         | 250    | 3 30 6 | 2 6        | 3 0        | 32         | 32        | 2 3            | 0 34    | 34     |     |
| MPH     |             | AT L                                                                 | Lt           | $\vdash$ | 200         | +   | +      | 8 8    | 0    | 0        | 0 0                | 1     | 8 8   | 8 8  | 6        | ة اة<br>0 د | 0    | σ o  | 5 6<br>5 C | 6    | O. 0   | δ   δ<br>Ο   C | 6      | δ (c  | 5 0<br>5 0                              | δ<br>0 | δ   δ<br>Ο   C | ) Ö  | δ σ<br>0 c | 0      | δ   δ<br>Ο   C | 0    | 5 6<br>0 C | 0      | 50       | 0      | 5 5<br>5 0  | 0      | 500    | δ   δ      | 6 6<br>0   | δ σ<br>0 c | 0         | δ   δ<br>Ο   C | 6       | 0 0    |     |
| 70 /    |             |                                                                      | *            | 0.0      | _           | +   | +      | 0 0    | +    | $\vdash$ | 5 0                | +     | 0.0   | +    | H        | 0.0         | +    | +    | 0.0        | 10   | 0 (    | o c            | 0      | o c   | j 0                                     | H      | 0.0            | +    | 0.0        | +      | 0.0            | 4    | 0 0        | ++     | 0 0      | 0.0    | 0 C         | 000    | +      | 0.0        | +          | 3 0.0      | +         | 0.0            | -       | 0 0    |     |
| 0F ,    | WIDTH=24    | DESIGN SOFTWARE EQUIVALENTS (NUMBER OF LANES 10 10 10 11 10 11 10 12 | <u> </u>     |          | +           | +   | 69     | +      | 78   | 20 2     | 20 00              | 6     | 93    | 000  | 102      | 105         | +    | -    | 170        | +    | `      | 129            | 135    | 138   | 14,4                                    | 14.    | 15.7           | 156  | 162        | 165    | 168            | 17   | 177        | 1 00 6 | <u> </u> | 19.    | 0 0         | 195    | 201    | 204        | 210        | 213        | 219       | 222            | 228     | 23     |     |
|         | >           | ABER                                                                 | Lt           |          | 9 9         |     | +      | 9 9    | 09   | 09       | 9 9                | 9     | 9 9   | 8 8  | 9        | 9 9         | 9    |      | 9 9        |      | 09     | 9              | 9      | 9     | 9 9                                     | 09     | 09 09          | 09   | 9 9        | 9      | 09 09          | 9    | 99         | 188    | 09       | 09     | 9 9         | 09     | 8 6 8  | 09 09      | 8 8        | 9 6        | 99        | 09 09          | 09      | 9 8    |     |
| SPEED   | 2 FT        | S (NU)                                                               | . ≥          | 0.0      | 0 0         | 0.0 | 0.0    | 0 0    | 0.0  | 0.0      | 0.0                | 0.0   | 0.0   | 0.0  | 0.0      | 0 0         | 0.0  | 0.0  | 0.0        | 0.0  | 0.0    | 0 0            | 0.0    | 0 0   | 0.0                                     | 0.0    | 0 0            | 0.0  | 0.0        | +      | 0.0            | +    | 0.0        | 0.0    | 0.0      | 0.0    | 0.0         | 0.0    | +      | 0.0        | +          | 0.0        | +         | 0 0            | $\perp$ | 0.0    |     |
|         | WIDTH=22    | ENTS                                                                 |              | 0 !      | 72<br>8     | 92  | 64     | 99     | 72   | 75       | 77                 | 83    | 98    | 9 6  | 94       | 97          | 102  | 105  | 108        | 113  | 116    | 13             | 124    | 127   | 132                                     | 135    | 138            | 143  | 146        | 152    | 154            | 160  | 163        | 168    | 174      | 176    | 179         | 179    | 185    | 187        | 193        | 196        | 201       | 204            | 209     | 212    |     |
| DESIGN  | MIC         | ZUIVAI                                                               | ij           | 0 5      | 55          | 22  | 55     | 55     | 55   | 55       | 22                 | 55    | 55    | 22   | 22       | 55          | 22   | 55   | ζ.<br>7.7. | 55   | 55     | 55             | 55     | 22    | 22                                      | 55     | 55             | 22   | 55         | 55     | 55             | 22   | 55         | 55     | 22       | 55     | 22          | 55     | 55     | 55         | 22         | 55         | 55        | 55             | 55      | 55     |     |
|         | ᇤ           | - RE                                                                 | *            | 0.0      | 0.0         |     |        | 0.0    | 0.0  | 0.0      | 0.0                | 0.0   | 0.0   |      | 0.0      | 0.0         | 0.0  |      | 0.0        | 0.0  | 0.0    | 0 0            | 0.0    | 0.0   | 0.0                                     | 0.0    | 0 0            | 0.0  | 0.0        | 0.0    | 0.0            | 0.0  | 0.0        | 0.0    | 0.0      | 0.0    | 0.0         | 0.0    | 0.0    | 0.0        | 0.0        | 0.0        | 0:0       | 0.0            | 0.0     | 0.0    |     |
| A<br>A  | WIDTH=20    | DFTWAI                                                               |              | 0 8      | 53          | 55  | 28     | 09     | 65   | 9        | 7.3                | 75    | 78    | 83   | 85       | 88          | 93   | 95   | 98         | 103  | 105    | 108            | 113    | 115   | 120                                     | 123    | 125            | 130  | 133        | 138    | 140            | 145  | 148        | 153    | 158      | 160    | 163         | 163    | 168    | 170        | 175        | 178        | 183       | 185            | 190     | 193    |     |
| FOR     | MID         | SN SC                                                                | Ľ            | 0 5      | 202         | 20  | 50     | 20     | 50   | 50       | 202                | 50    | 20    | 20   | 50       | 20          | 50   | 50   | 202        | 50   | 50     | 20             | 50     | 20    | 20                                      | 50     | 20             | 50   | 50         | 50     | 200            | 20   | 50         | 202    | 20       | 50     | 202         | 50     | 20     | 20         | 20         | 20         | 20        | 20             | 50      | 20     |     |
| ORS     | S FT        | DESI                                                                 | >            | 0.0      | 0.0         | 0.0 | 0.0    | 0.0    | 0.0  | 0.0      | 0.0                | 0.0   | 0.0   | 0.0  | 0.0      | 0.0         | 0.0  | 0.0  | 0.0        | 0.0  | 0.0    | 0 0            | 0.0    | 0.0   | 0.0                                     | 0.0    | 0.0            | 0.0  | 0.0        | 0.0    | 0 0            | 0.0  | 0.0        | 0.0    | 0.0      | 0.0    | 0.0         | 2.5    | 2.6    | 2.6        | 2.6        | 2.6        | 2.7       | 2.7            | 2.7     | 2.8    |     |
| FACTORS | WIDTH= 18   | ō<br>0                                                               | ,   <u>`</u> | 0 ;      | 4 4 5 A     | 50  | 52     | 54     | 59   | 61       | 65                 | 68    | 70    | 75   | 77       | 79          | 8    | 98   | 88 6       | 93   | 95     | 97             | 102    | 104   | 106                                     | Ħ      | 113            | 117  | 120        | 124    | 126            | 131  | 133        | 138    | 142      | 144    | 14 / 205    | 205    | 205    | 205        | 205        | 205        | 205       | 205            | 205     | 205    |     |
|         | .OIM        | -                                                                    | Lt           | 0 ;      | 4<br>4<br>7 | 45  | 45     | 45     | 45   | 45       | 45                 | 45    | 7 7   | 45   | 45       | 45          | 45   | 45   | 4 4<br>5 م | 45   | 45     | 45             | 45     | 45    | 4 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 | 45     | 45             | 45   | 45         | 45     | 45             | 45   | 45         | 45     | 45       | 45     | 45          | 64     | 62     | 61         | 29         | 58         | 57        | 5 5            | 54      | 54     |     |
| DESIGN  | Η.          |                                                                      | E(%)         |          | 2.0         | 2.2 | 2.3    | 4.7    | 2.6  | 2.7      | χ. 2<br>6.2<br>6.2 | 3.0   | 3.1   | 3.3  |          | 3.5         | 3.7  | 3.8  | v. v.      | 4.1  | 4.2    | 4 4<br>ک 4     | 4.5    | 9.4   | . 4<br>%.                               | 6.4    | 5.0            | 5.2  | 5.3        | 5.5    | 9.6            | . 8. | 5.9        | 6.1    | 5.3      | 4.6    | 5.5         | 5.5    | 6.7    | ω σ<br>ω σ | 7.0        | 7.1        | 5.7       | 4. 7.          | 7.6     | 7.7    |     |
| DES     | DESIGN      | VELOCITY<br>=70                                                      | RADIUS(FT) E |          | 10/51 2     |     | П      | 8851 2 | 8127 | 7805     | 7227               | 6967  | 6724  |      | 6079     | 5888        | 5537 | 5376 | 5222       | 4937 | 4805 4 | 4679 4         | 4443 4 | 4332  | 4226 4                                  | 4027   | 3933 (         | 3756 | 3673       | 3514 E | 3439           | 3296 | 3228       | 3099 ( | 2977 6   | 2919 6 | 2865        | 2862 6 | 2753 ( | 2699 (     | 2590 7     | 2535       | 2423      | 2365 /         | 2242    | 2175 7 |     |

TRANSITION CURVES - RURAL 70 MPH DESIGN SPEED

SPECIFICATION REFERENCE

NOTE: Lt, Lr & w VALUES IN FEET. LISTED RADIUS IS THE MINIMUM ALLOWABLE RADIUS FOR THE CORRESPONDING E, Lt, Lr, AND w VALUES.

REV. 1/07 802.44