

DEPARTMENT OF TRANSPORTATION

1401 EAST BROAD STREET RICHMOND, VIRGINIA 23219-2000

PHILIP A. SHUCET COMMISSIONER

MOHAMMAD MIRSHAHI, P.E.
STATE LOCATION AND DESIGN ENGINEER

January 9, 2004

MEMORANDUM

To: All Holders of the Virginia Department of Transportation's 2001 Road and Bridge Standards

The following is a list of standards contained in the 2001 Road and Bridge Standards that have been revised. Please add these pages to your copy of the standards. An insertable sheet will <u>not</u> be required in plan assemblies.

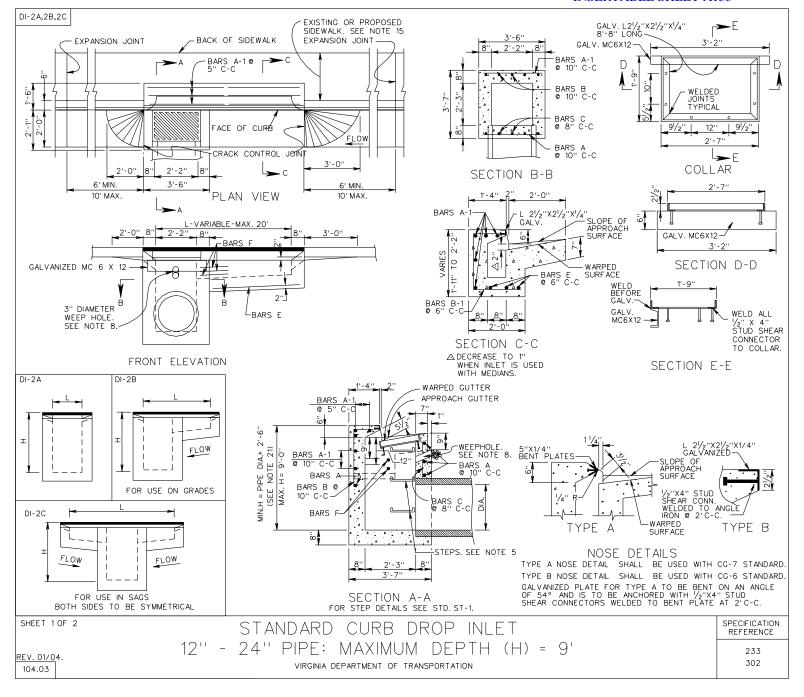
PAGE 802.34	STANDARD TC-5.01	REVISION Revised LS values.
802.35	TC-5.01	Revised radius value.
802.37	TC-5.01	Revised CR value.

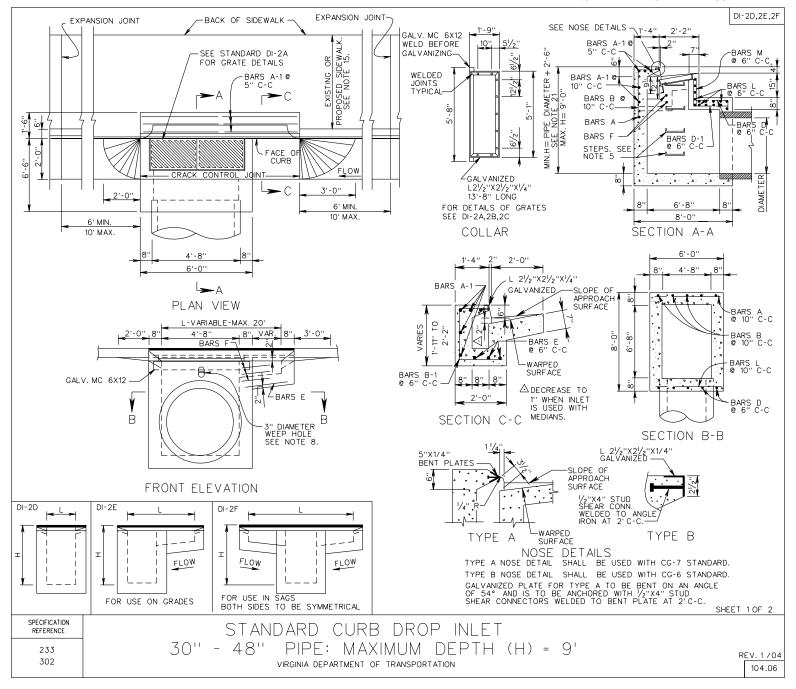
The following is a list of revised standards to the 2001 Road and Bridge Standards that do require an insertable sheet to be in included in your plan assembly until the next edition of the imperial standards is published. Please add these pages to your copy of the standards. The respective insertable sheet number has been placed with the revised standard. An insertable sheet is available for each of these revised standards. The insertable sheets are available on VDOT's web site on the FTP server and in Falcon DMS for VDOT personnel. These insertable sheets will be required in plan assemblies for projects utilizing the standard items listed below that have not been to advertisement prior to June 9, 2004.

PAGE	INSERT	STANDARD	REVISION
104.03	A153	DI-2A,2B,2C	Revised details showing approach surface to slot.
104.06	A153	DI-2D,2E,2F	Revised details showing approach surface to slot.

VirginiaDot.org
WE KEEP VIRGINIA MOVING

PAGE	INSERT	STANDARD	REVISION
107.00	A151	PB-1	Added Notes Page
107.01	A86	PB-1	Removed requirement for class II backfill
107.02	A86	PB-1	Removed requirement for class II backfill
107.03	A120	PB-1	Removed requirement for class II backfill
107.04	A120	PB-1	Removed requirement for class II backfill
108.06	A81	UD-4	Removed inspection port and modified outlet pipe configuration.
115.01	ISD414.04	ESC-INS	Revised entrance width from 12" to 12'
203.02	A78	CG-9B	Revised Notes.
203.03	A78	CG-9D	Revised Notes
203.05	A59	CG-12	Revised notes and dimensions.
203.06	A59	CG-12	Revised notes and dimensions.
203.07	A59	CG-12	Revised notes and dimensions.
203.08	A108	CG-13	Revised notes and dimensions.


PAGE	INSERT	STANDARD	REVISION
301.14	ISD2623	PR-5	Revised anchor slab detail.
301.17	ISD2724	PR-6	Revised anchor slab detail.
301.20	ISD2761	PR-7	Removed load transfer dowel into bridge (section F-F).Revised anchor slab detail.
301.23	ISD2861	PR-8	Removed load transfer dowel into bridge (section F-F).Revised anchor slab detail.
301.26	ISD2862	PR-9	Removed load transfer dowel into bridge (section F-F).Revised anchor slab detail.
501.15	A91	GR-8,8A,8B,8C	Revised notes referring to limits of item.
501.19	A88	GR-10	Revised note to remove reference to splice plate.
501.20	A88	GR-10	Revised detail changing text from "Clear Zone" to "Dynamic Deflection". Revised note to remove reference to splice plate.
501.39	A93	GR-INS	Added detail for transition from old GR-8 to current standard.
501.41	A94	MB-3	Revised flare rates.
501.44	A98	MB-7D, 7E, 7F	Revised flare rates.
501.45	A103	MB-7D PC	Revised flare rates.
501.47	A98	MB-8A	Revised flare rates


PAGE	INSERT	STANDARD	REVISION
501.56	A96	MB-12A,B,C	Revised flare rates.
501.58	A104	MB-13	Revised flare rates.
502.04	A152	FE-CL	Revised Specification Designation of post sizing.
502.07	A152	FE-6	Revised notes.
603.02	A149	RFD-1	Revised table dimension from Ft. to In.
1301.72	A154	OSS-1	Added Note #6 and revised fixed object offset distance.
1301.73	A154	OSS-1	Deleted catwalks and replaced details with electrical installation details and added a contactor.
1301.74	A155	OSS-1	Replaced details with sign panel erection details and sign lighting details.
1301.75	A155	OSS-1	Replaced details with sign panel erection details and sign lighting details.

If you have any questions or comments regarding the listed revisions to this publication, please contact Mrs. N. E. Berry of the Engineering Services Section at (804) 786-2543.

Sincerely,

Mohammad Mirshahi, P.E. State Location and Design Engineer

GENERAL

- METHOD "A" PIPE BEDDING SHALL BE USED FOR ALL TYPES OF PIPE CULVERTS WITHIN THE APPLICABLE HEIGHT OF COVER RANGE NOTED IN THE STANDARD PC-1 TABLES UNLESS OTHERWISE NOTED ON THE PLANS.
- 2. H = HEIGHT OF COVER MEASURED FROM TOP OF CULVERT TO FINISHED GRADE.
- 3. b = EXCAVATION DEPTH AS SHOWN ON PLANS OR TO FIRM BEARING SOIL.

CIRCUI AR PIPE

- 1. D = OUTSIDE DIAMETER OF PIPE.
- 2. d = INSIDE DIAMETER OF PIPE.
- 3. X = WIDTH OF CLASS | BACKFILL MATERIAL BEYOND THE EXTREMITY OF THE PIPE. X = 12" WHERE d IS LESS THAN 36". X = 18" WHERE d IS 36" AND GREATER.
- 4. WHERE DIRECTED BY THE ENGINEER. BEDDING MATERIAL MAY BE ELIMINATED FOR NORMAL EARTH FOUNDATIONS UNDER ROUTINE ENTRANCE PIPE (EXCEPT PLASTIC PIPE) 30" AND LESS IN DIAMETER WITH HEIGHT OF COVER 15' OR LESS.
- REGULAR BACKFILL MATERIAL MAY BE USED IN LIEU OF CLASS I BACKFILL MATERIAL FOR ALL FOUNDATION TYPES FOR ROUTINE ENTRANCE PIPE (EXCEPT PLASTIC PIPE) 30" AND LESS IN DIAMETER WITH HEIGHT OF COVER 15" OR LESS.
- 6. BEDDING MATERIAL AND CLASS I BACKFILL MATERIAL MAY BE ELIMINATED FOR SHOULDER SLOT INLET (DI-13) OUTLET PIPES INSTALLATIONS.

ELLIPTICAL PIPE

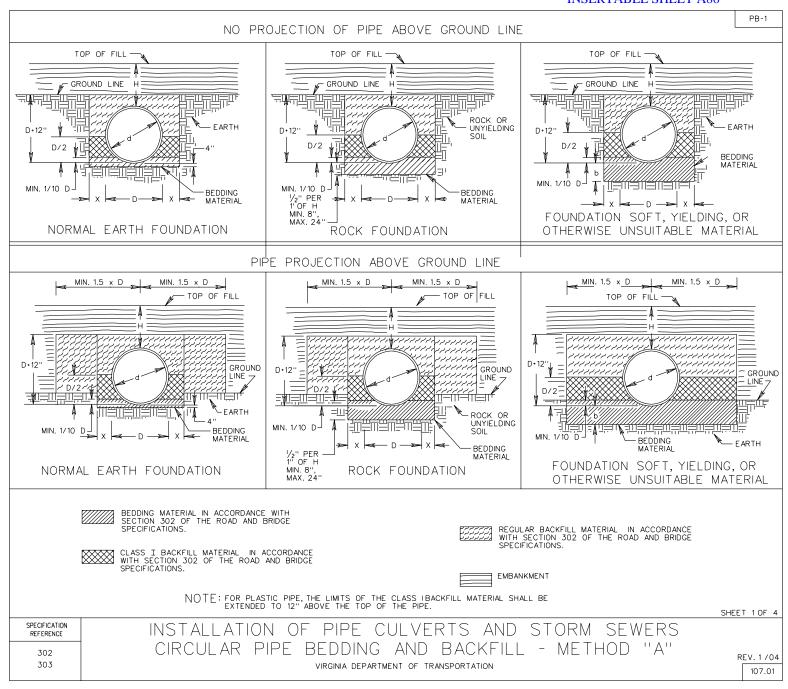
- 1. S1 OUTSIDE SPAN DIMENSION OF PIPE
- 2. S2 INSIDE SPAN DIMENSION OF PIPE.
- 3. R = OUTSIDE RISE DIMENSION OF PIPE.
- 4. X WIDTH OF CLASS IBACKFILL MATERIAL BEYOND THE EXTREMITY OF THE PIPE.
- X = 12" WHERE S2 IS LESS THAN 36".

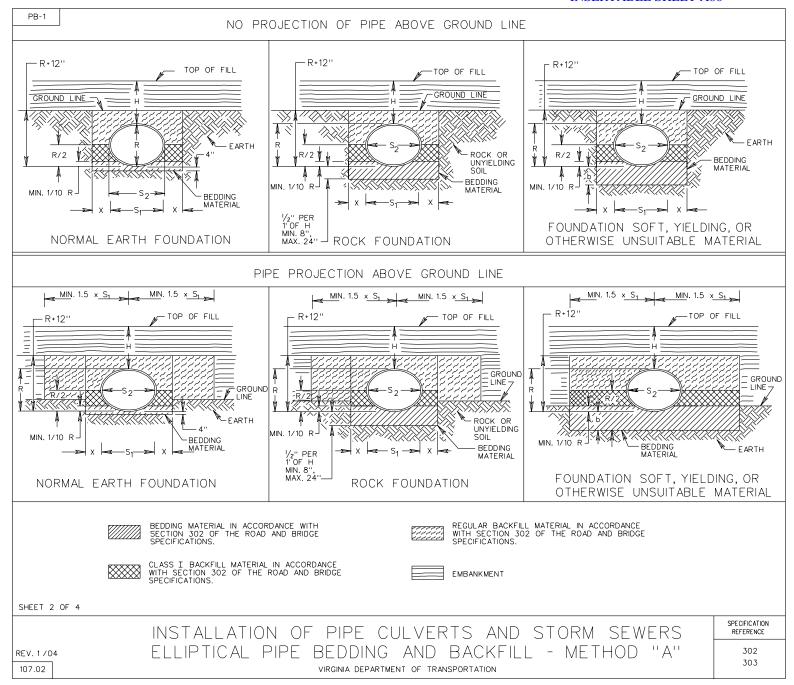
 X = 18" WHERE S2 IS S6" AND GREATER

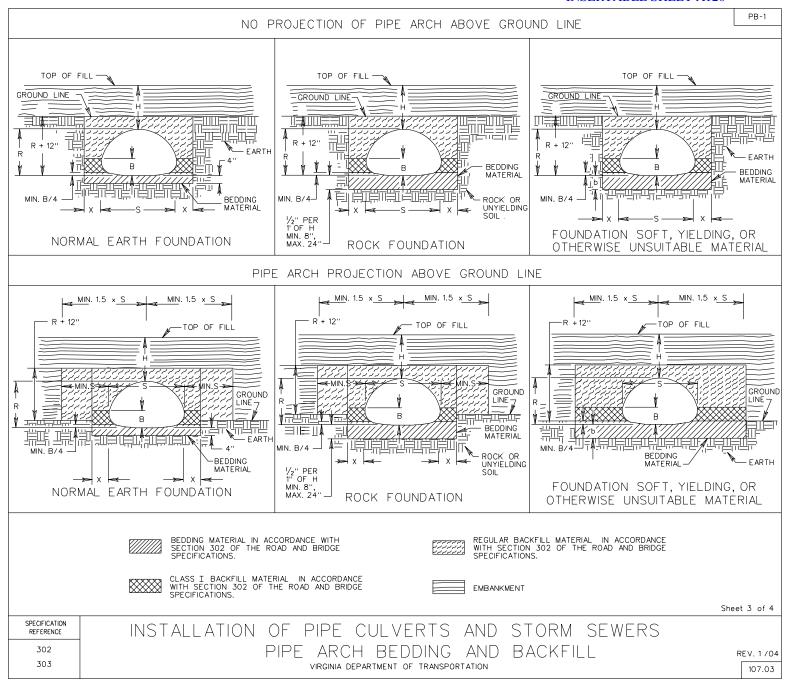
 5. WHERE DIRECTED BY THE ENGINEER. BEDDING MATERIAL MAY BE ELIMINATED FOR NORMAL EARTH FOUNDATIONS UNDER ROUTINE ENTRANCE PIPE WHERE S 2 IS 38" OR LESS AND HEIGHT OF COVER 15' OR LESS.
- 6. REGULAR BACKFILL MATERIAL MAY BE USED IN LIEU OF CLASS I BACKFILL MATERIAL FOR ALL FOUNDATION TYPES FOR ROUTINE ENTRANCE PIPE WHERE S_2 IS 38" OR LESS AND HEIGHT OF COVER 15' OR LESS.

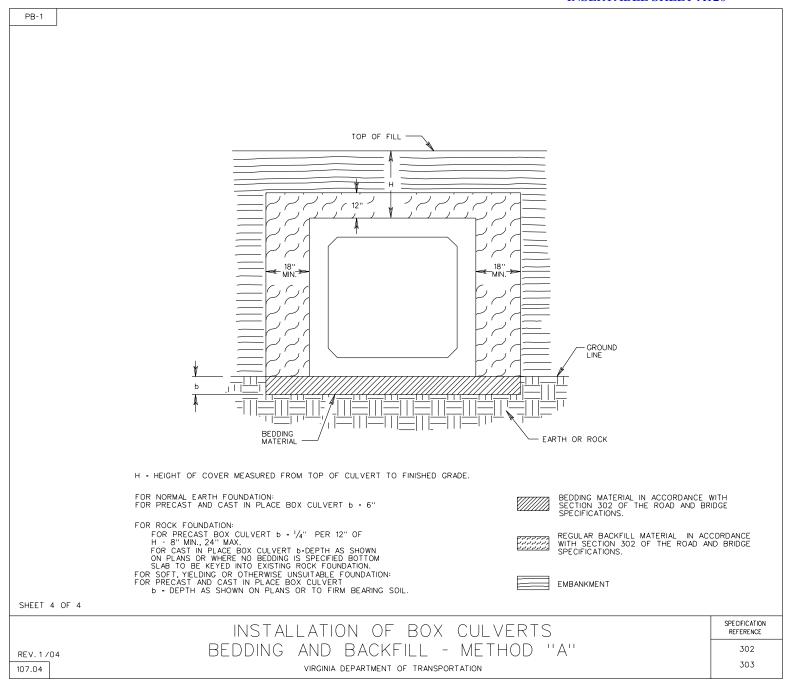
PIPE ARCH

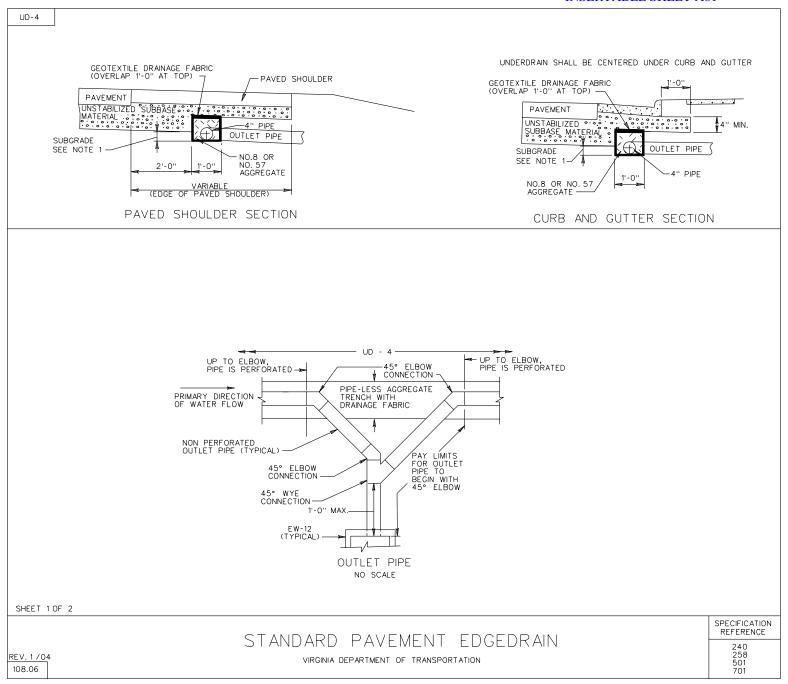
- 5. WHERE DIRECTED BY THE ENGINEER. BEDDING MATERIAL MAY BE ELIMINATED FOR NORMAL EARTH FOUNDATIONS UNDER ROUTINE ENTRANCE PIPE WHERE S2 IS 35" OR LESS AND HEIGHT OF COVER 15' OR LESS.
- 6. REGULAR BACKFILL MATERIAL MAY BE USED IN LIEU OF CLASS I BACKFILL MATERIAL FOR ALL FOUNDATION TYPES FOR ROUTINE ENTRANCE PIPE WHERE S IS 35" OR LESS AND HEIGHT OF COVER 15' OR LESS.

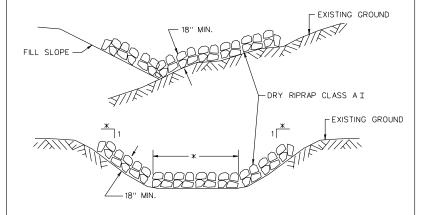

INSTALLATION OF PIPE CULVERTS AND STORM SEWERS GENERAL NOTES


REFERENCE 302

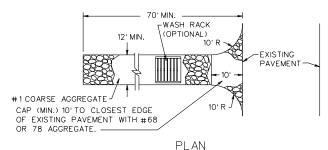

SPECIFICATION

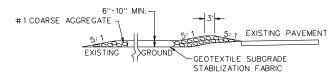

NEW. 1/04


VIRGINIA DEPARTMENT OF TRANSPORTATION



ESC-INS


SUGGESTED METHOD OF TEMPORARILY PLACING RIPRAP FOR EROSION CONTROL IN CHANNELS, DITCHES, & AT TOE OF FILL SLOPES



NOTES:

 THE DEPTH OF PROTECTION WILL DEPEND ON WHATEVER DEPTH IS ATTAINABLE, WITH THE RIPRAP BEING EVENLY SPREAD WITH THE QUANTITY SHOWN ON THESE PLANS. RIPRAP MAY BE ADDED OR DELETED AS FOUND NECESSARY BY THE ENGINEER.

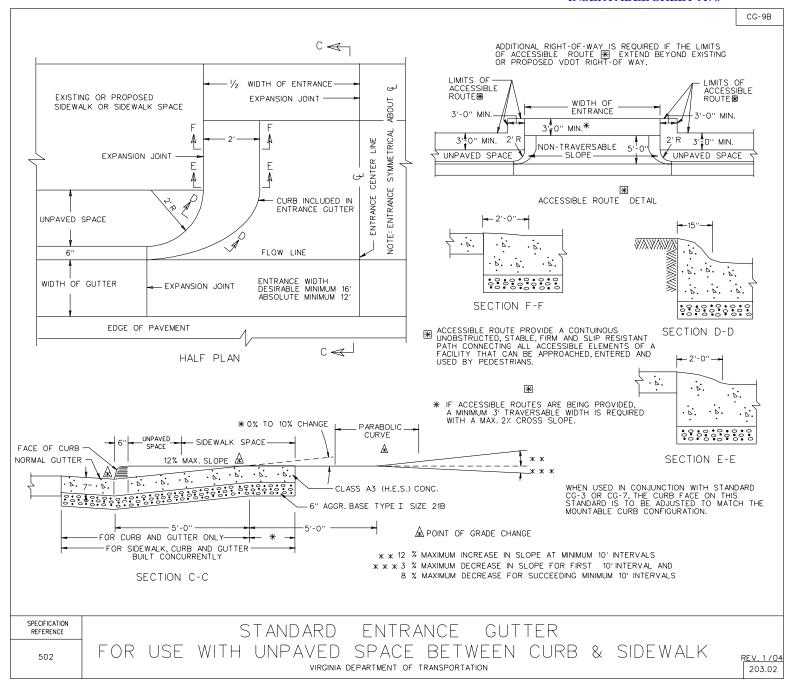
MINIMUM REQUIREMENTS FOR STABILIZED CONSTRUCTION ENTRANCE

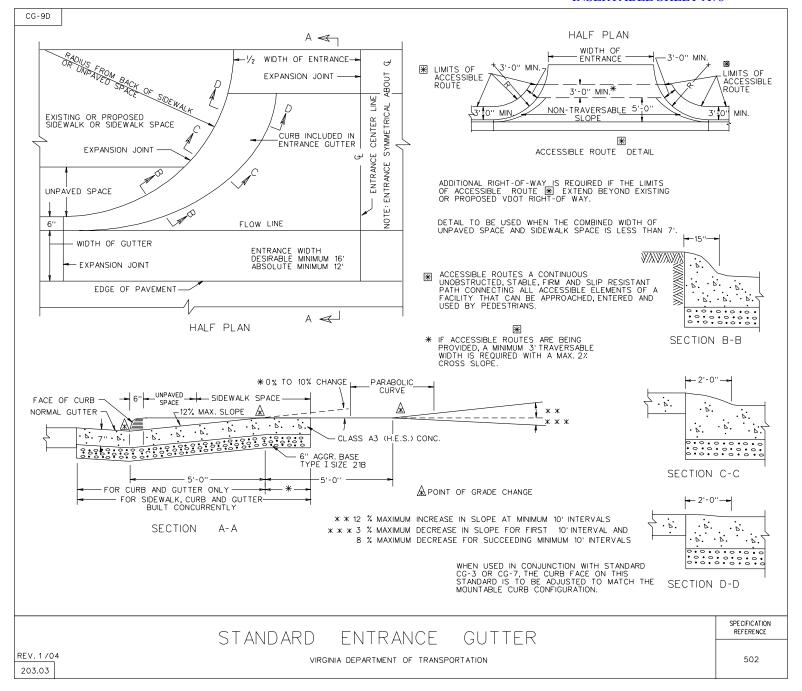
PROFIL F

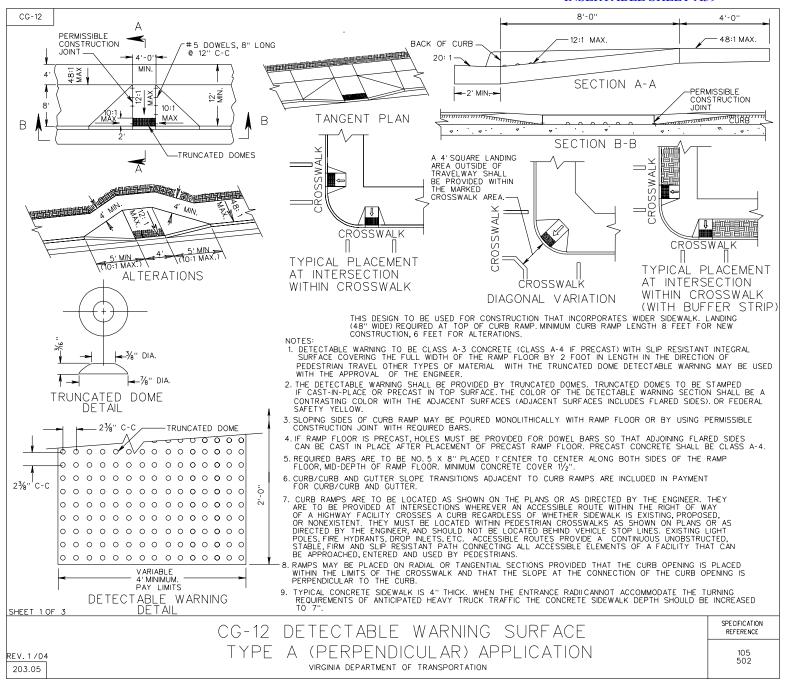
- 1. SURFACE WATER SHALL BE PIPED UNDER THE CONSTRUCTION ENTRANCE. IF PIPING IS IMPRACTICAL, A MOUNTABLE BERM WITH 5:1 SLOPES WILL BE PERMITTED.
- 2.THE ENTRANCE SHALL BE MAINTAINED IN A CONDITION WHICH WILL PREVENT TRACKING OR FLOWING OF SEDIMENT ONTO PUBLIC RIGHT OF WAY. THIS MAY REQUIRE PERIODIC TOP DRESSING WITH ADDITIONAL STONE AS CONDITIONS DEMAND AND REPAIR AND/OR CLEANOUT OF ANY MEASURES USED TO TRAP SEDIMENT. ALL SEDIMENT SPILLED, DROPPED, WASHED OR TRACKED ONTO PUBLIC RIGHT OF WAY SHALL BE REMOVED IMMEDIATELY.
- 3. WHEELS SHALL BE CLEANED TO REMOVE SEDIMENT PRIOR TO ENTRANCE ONTO PUBLIC RIGHT OF WAY. WHEN WASHING IS REQUIRED, IT SHALL BE DONE ON AN AREA STABILIZED WITH STONE AND WHICH DRAINS INTO AN APPROVED SEDIMENT TRAPPING DEVICE.
- 4.PERIODIC INSPECTION AND NEEDED MAINTENANCE SHALL BE PROVIDED AFTER HEAVY USE AND EACH RAIN.
- * SIDE SLOPES AND BOTTOM WIDTH (IF TRAPEZOIDAL) SHOWN IN TYPICAL SECTION OF PROPOSED DITCH OR CHANNEL.

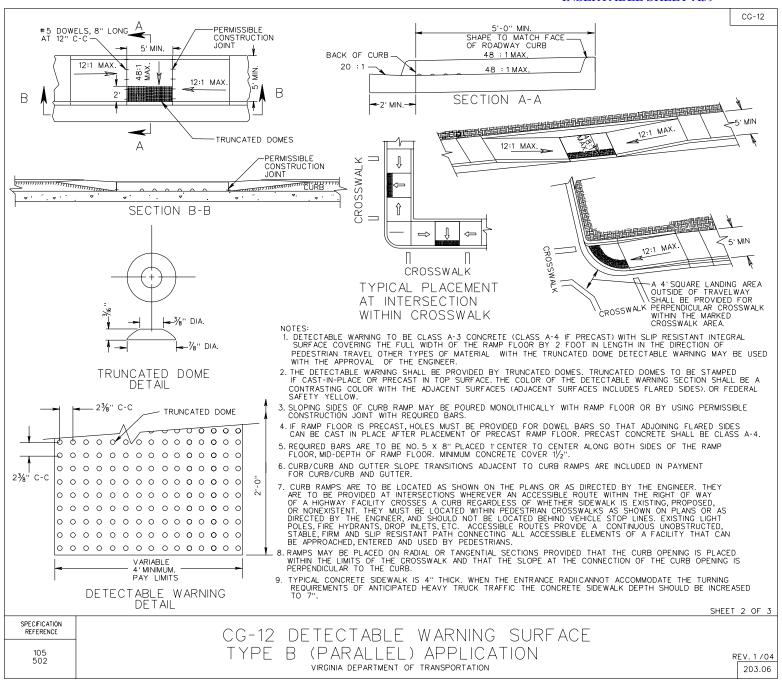
SHEET 1 OF 3

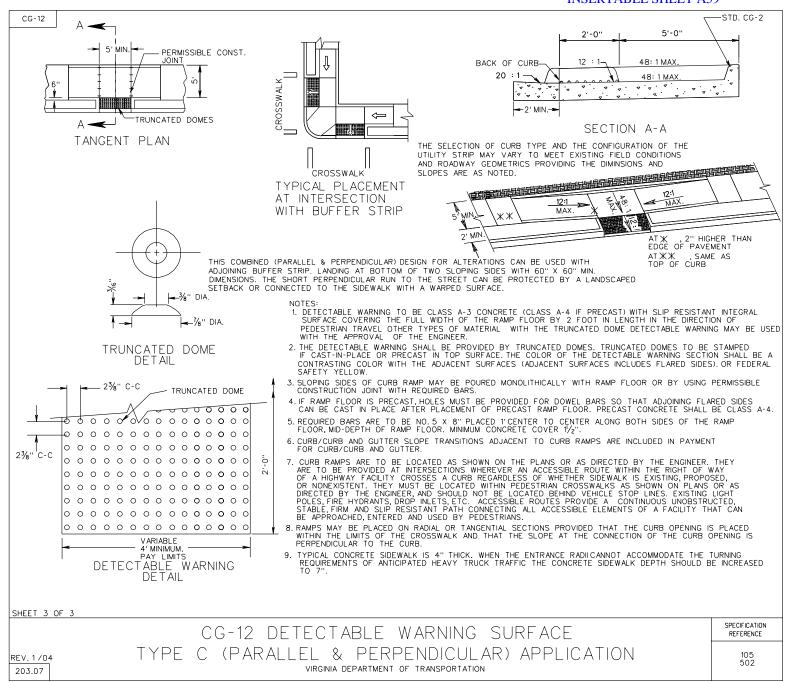
SPECIFICATION REFERENCE


TEMPORARY EROSION & SILTATION CONTROL

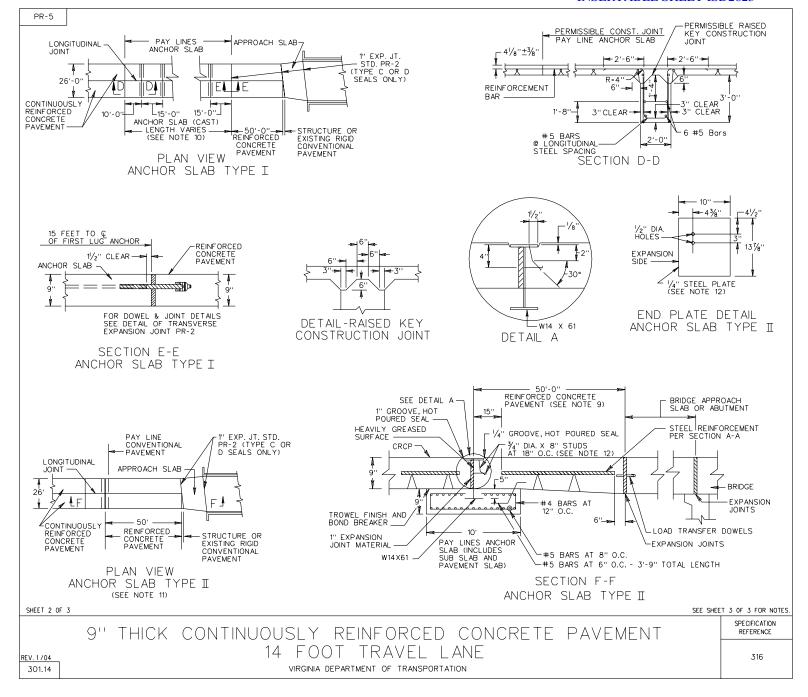

107 303

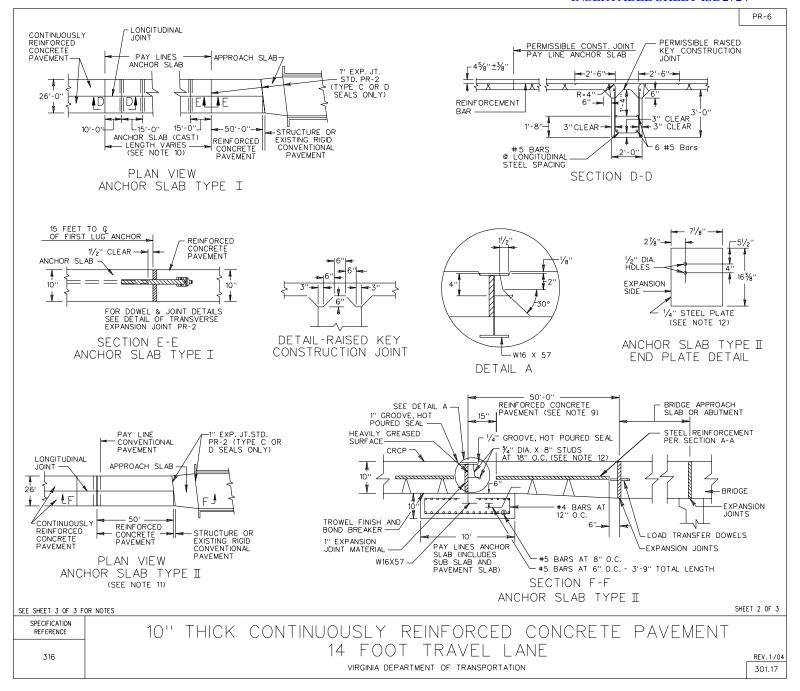

VIRGINIA DEPARTMENT OF TRANSPORTATION

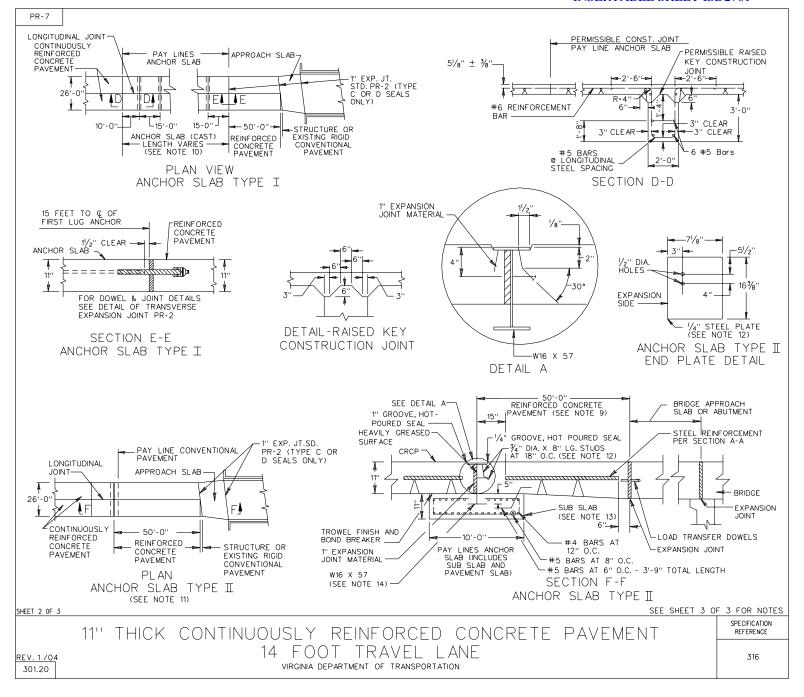

REV. 1/04

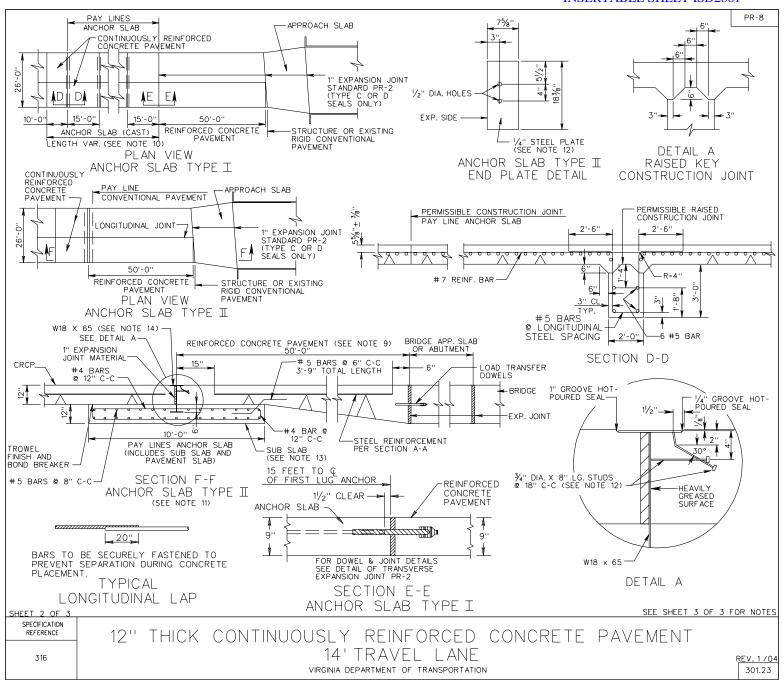

115.01

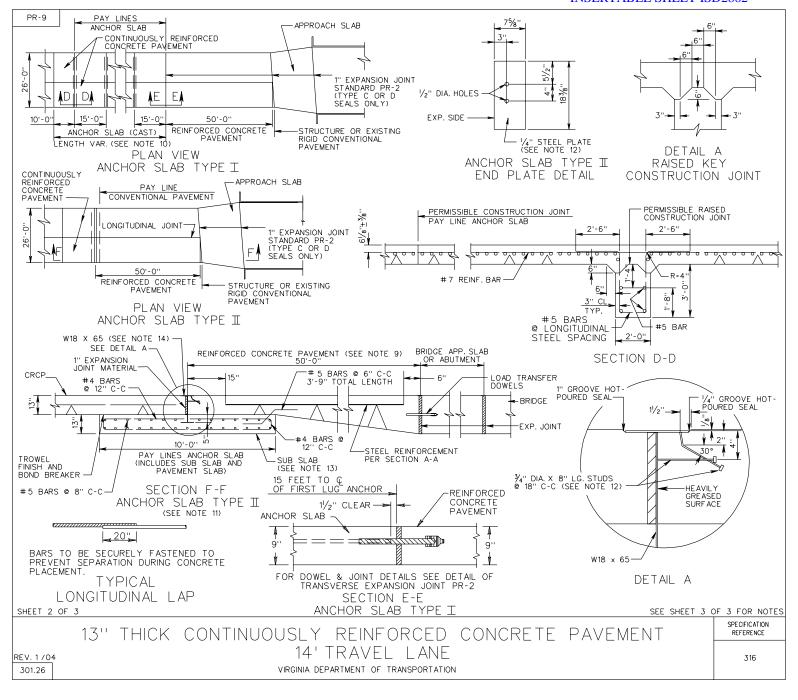


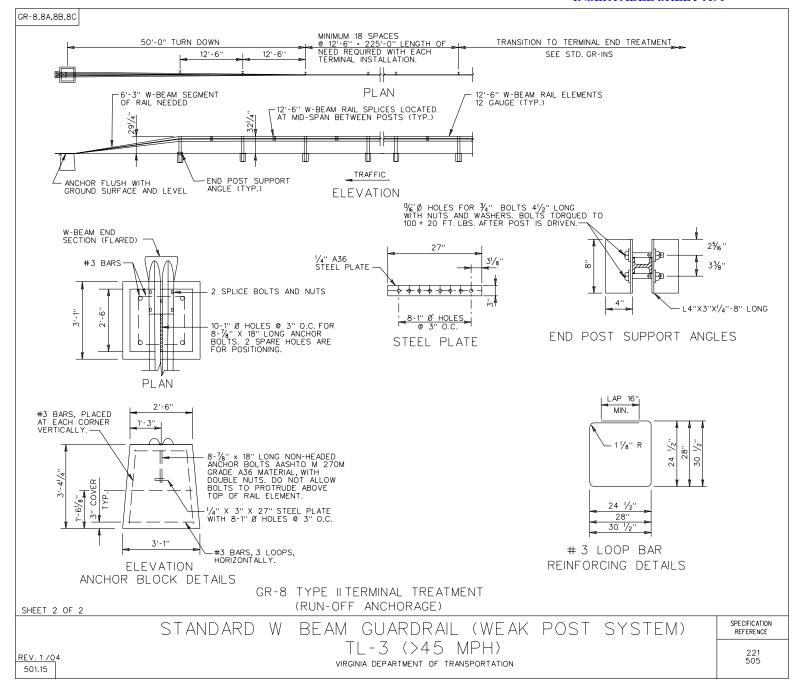


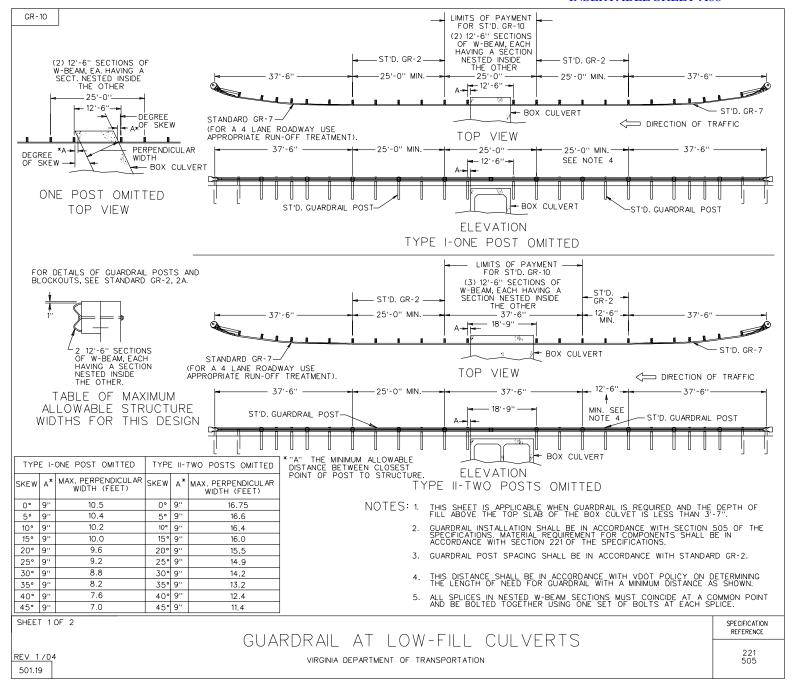


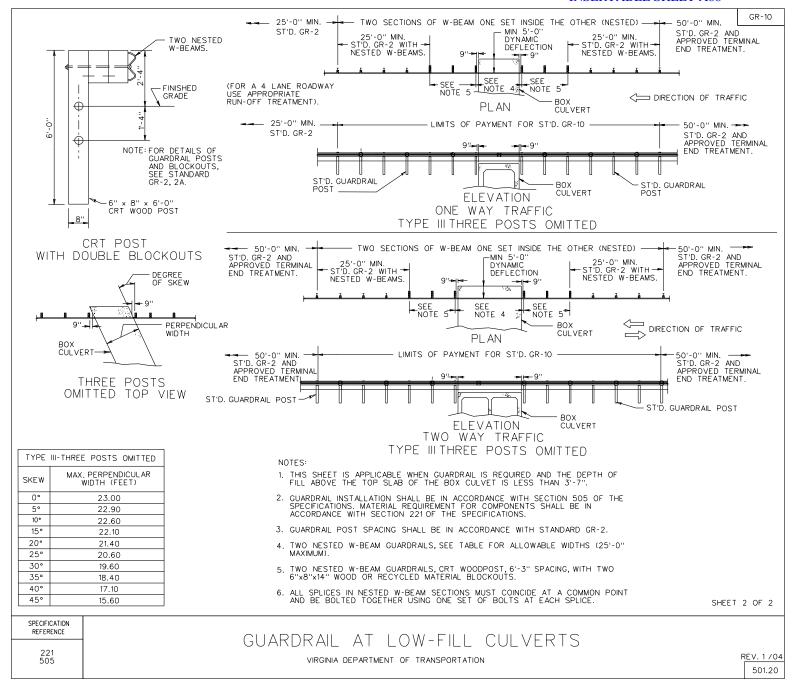


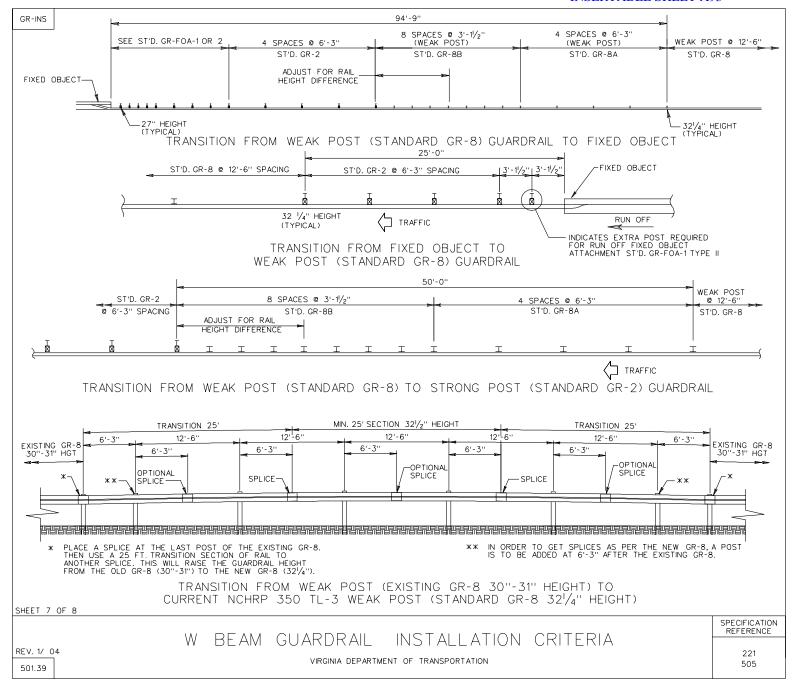


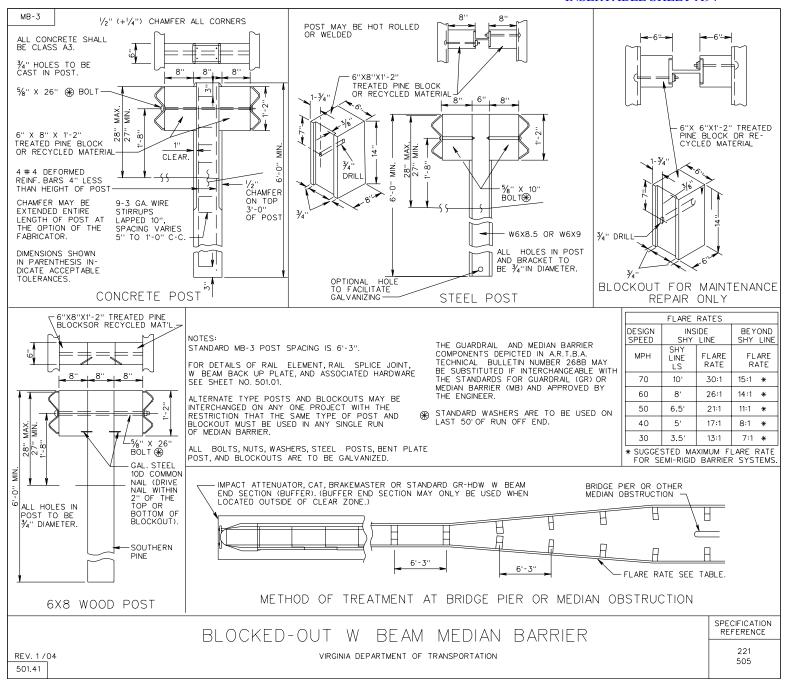


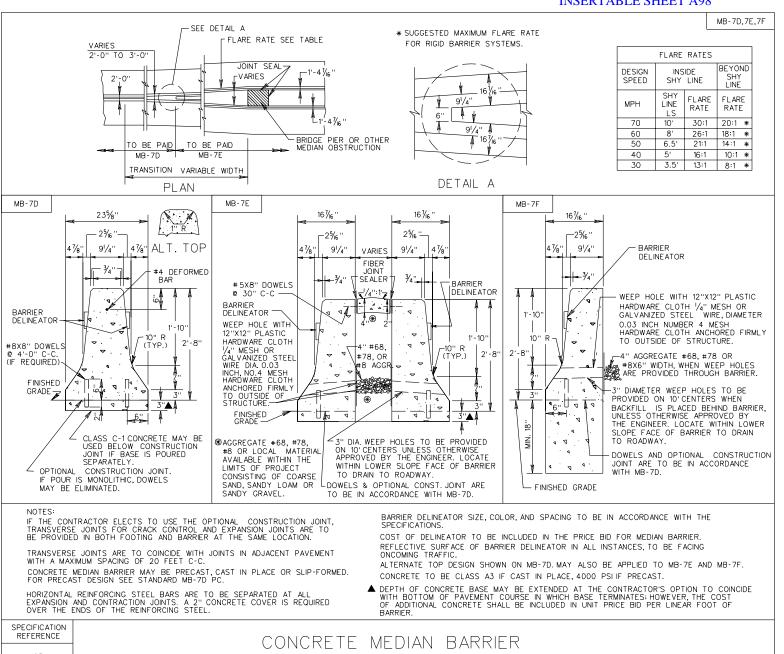


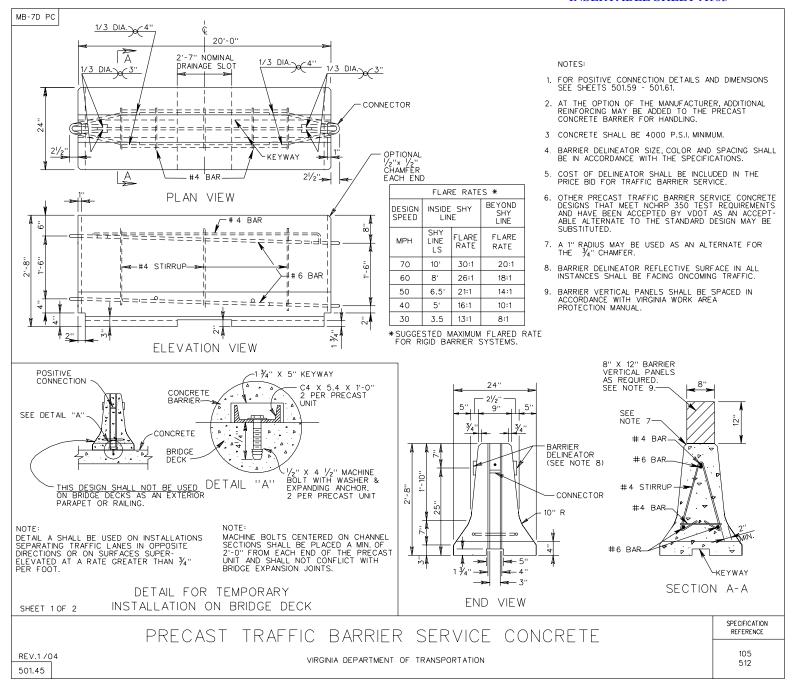


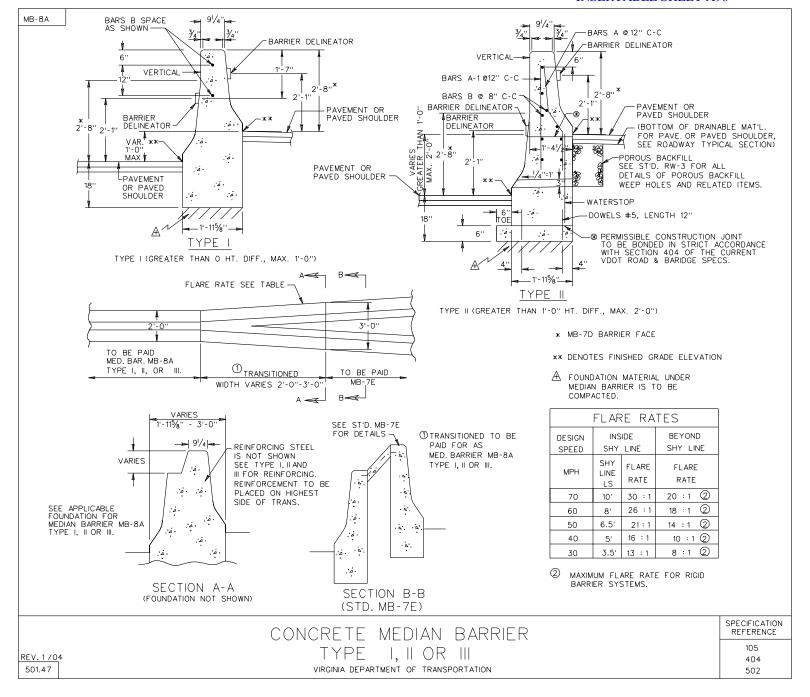






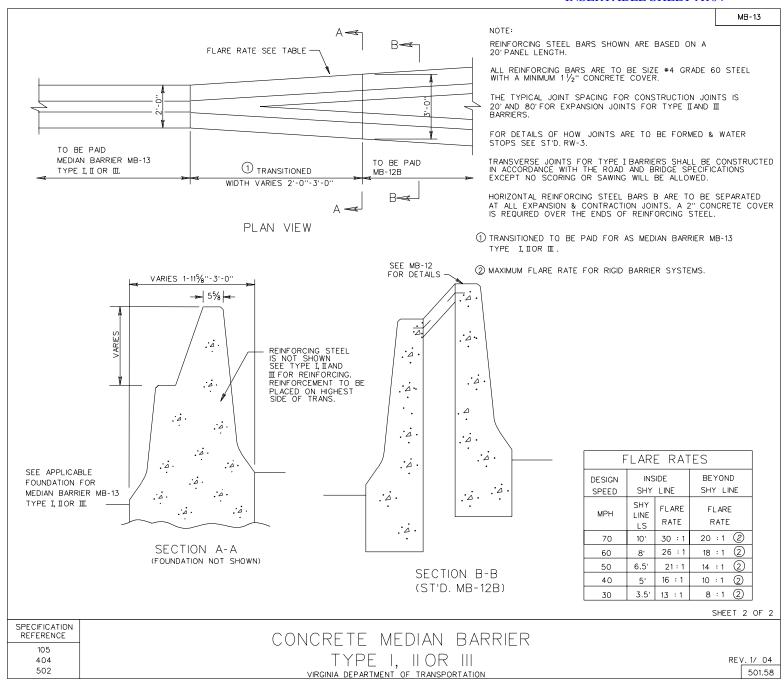


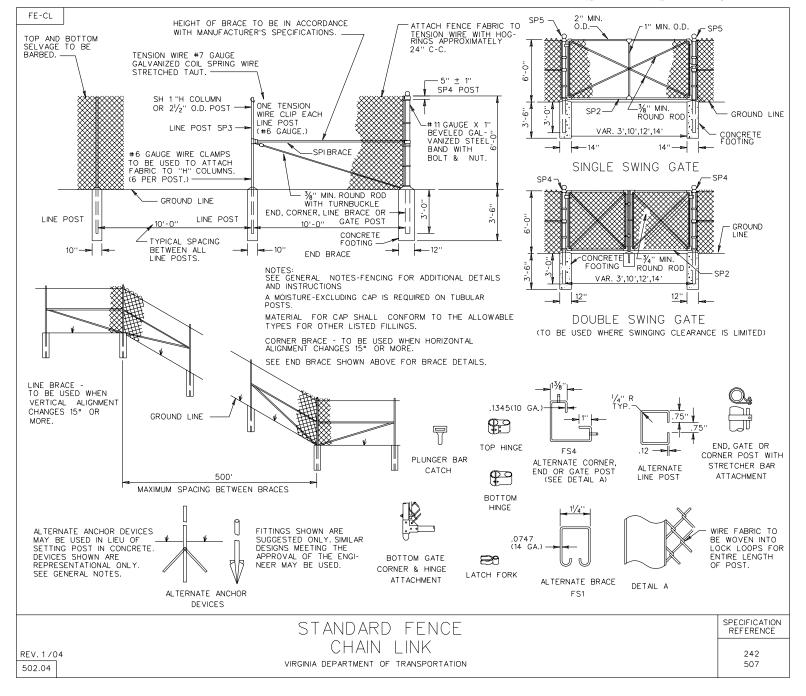

REV. 1/04

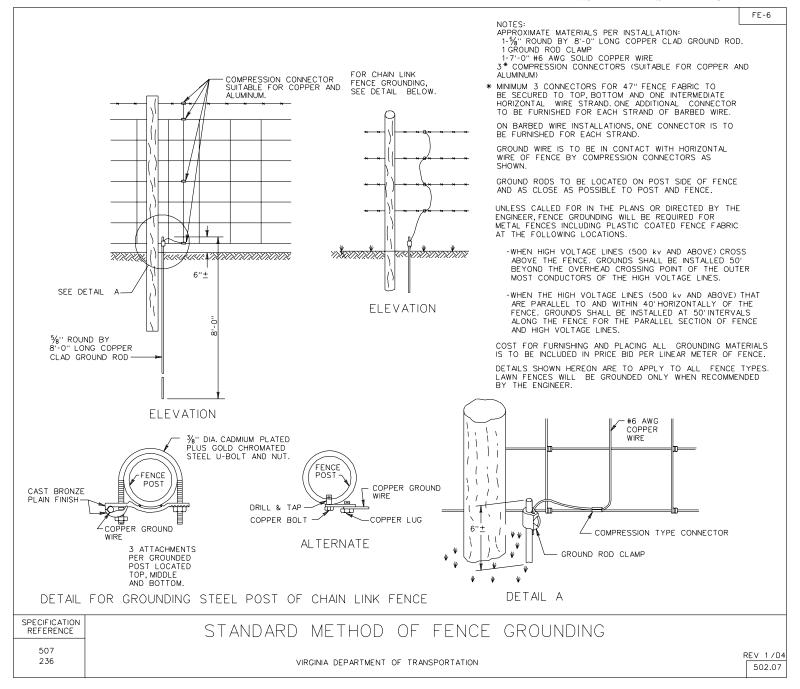

501.44

VIRGINIA DEPARTMENT OF TRANSPORTATION

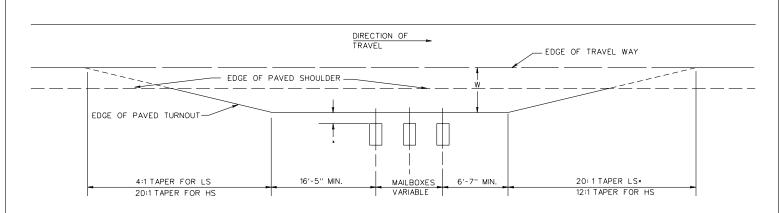
502






INSERTABLE SHEET A96 MB-12A, B, C NOTES: VARIES 0" TO 3 SEE DETAIL A IF THE CONTRACTOR ELECTS TO USE THE OPTIONAL CONSTRUCTION FLARE RATE SEE TABLE JOINTS, TRANSVERSE JOINTS FOR CRACK CONTROL AND EXPANSION JOINTS ARE TO BE PROVIDED IN BOTH FOOTING AND BARRIER AT THE SAME LOCATION JOINT SEAL TRANSVERSE JOINTS ARE TO COINCIDE WITH JOINTS IN ADJACENT -VARIES PAVEMENT WITH A MAXIMUM SPACING OF 20 FT. C-C. CONCRETE MEDIAN BARRIER MAY BE CAST IN PLACE OR SLIP-FORMED. HORIZONTAL REINFORCING STEEL BARS ARE TO BE SEPARATE AT ALL EXPANSION AND CONTRACTION JOINTS. A 2" CONCRETE COVER IS REQUIRED OVER THE ENDS OF THE REINFORCING STEEL. BRIDGE PIER OR OTHER MEDIAN OBSTRUCTION TO BE PAID TO BE PAID BARRIER DELINEATOR SIZE, COLOR AND SPACING SHALL BE IN MB-12A MB-12B ACCORDANCE WITH THE SPECIFICATIONS, COST OF DELINEATOR SHALL BE INCLUDED IN THE PRICE BID FOR MEDIAN BARRIER. REFLECTIVE TRANSITION VARIABLE WIDTH DETAIL A SURFACE OF BARRIER DELINEATOR, IN ALL INSTANCES, SHALL BE FACING THE ONCOMING TRAFFIC. PLAN CONCRETE SHALL BE CLASS A3 IF CAST IN PLACE, 4000 PSIIF PRECAST. DEPTH OF CONCRETE BASE MAY BE EXTENDED AT THE CONTRACTOR'S OPTION TO COINCIDE WITH BOTTOM OF PAVEMENT COURSE IN WHICH BASE TERMINATES; HOWEVER, THE COST OF ADDITIONAL CONCRETE SHALL BE INCLUDED IN UNIT PRICE BID PER LINEAR FT. OF BARRIER. 14 5/8" 145/8" VARIES 4½"'41/8"'5% 5 1/8"4 1/8"4 1/8 %''4'%|'5% 3/4 #5 X 8" DOWELS #4 DEFORMED BAR @ 30" C-C /a":1' 1/4":1' #4 DEFORMED #4 DEFORMED BAR BAR * BARRIER DELINEATOR FIBER JOINT SEALER WEEP HOLE WITH 12" X 12" PLASTIC FLARE RATES 4 4 HARDWARE CLOTH 1/4" MESH OR BEYOND 50 GALVANIZED STEEL WIRE, DIAMETER DESIGN INSIDE WEEP HOLE WITH SHY 0.03 INCH NUMBER 4 MESH SPEED SHY LINE 12" X 12" PLASTIC -4" #68 LINE HARDWARE CLOTH ANCHORED FIRMLY HARDWARE CLOTH #78, OR V 10" R--10" TO OUTSIDE OF STRUCTURE. 1/4" MESH OR GALVANIZED STEEL 10" FLARE FLARE \#8 AGGR ᢦ . MPH LINE RATE RATE WIRE DIA. 0.03 25 4" AGGREGATE #68, #78 OR INCH NO 4 MESH #8 X 6" WIDTH, WHEN WEEP HOLES 70 10' 30:1 20:1 * HARDWARE CLOTH ARE PROVIDED THROUGH BARRIER. 60 8' 26:1 | 18:1 * ANCHORED FIRMLY 4 14:1 * 50 6.5 21:1 3" DIAMETER WEEP HOLES TO BE STRUCTURE. \circledast 5' 40 16:1 10:1 * . PROVIDED ON 10' CENTERS WHEN FINISHED ۰<u>-</u>- ال 4 V . | 4 30 3.5' 13:1 8:1 * GRADE ٧ BACKFILL IS PLACED BEHIND BARRIER, UNLESS OTHERWISE APPROVED BY FINISHED/ THE ENGINEER. LOCATE WITHIN LOWER * SUGGESTED MAXIMUM FLARE RATE ⊕ AGGREGATE #68, #78. GRADE -SLOPE FACE OF BARRIER TO DRAIN #8 OR LOCAL MATERIAL FOR RIGID BARRIER SYSTEMS. 3" DIA. WEEP HOLES TO BE PROVIDED ON 10 FT. CENTERS UNLESS OTHERWISE 4 TO ROADWAY. AVAILABLE WITHIN THE DOWELS AND OPTIONAL CONSTRUCTION LIMITS OF PROJECT APPROVED BY THE ENGINEER. LOCATE JOINT ARE TO BE IN ACCORDANCE CONSISTING OF COARSE WITHIN LOWER SLOPE FACE OF BARRIER 4 WITH MR-12A SAND, SANDY LOAM OR TO DRAIN TO ROADWAY. SANDY GRAVEL. DOWELS & OPTIONAL CONST. JOINT ARE TO BE IN ACCORDANCE WITH MB-12A. MB-12C MB-12B SHEET 2 OF 2 SPECIFICATION REFERENCE CONCRETE MEDIAN BARRIER (TALL WALL) 105 REV. 1/04 VIRGINIA DEPARTMENT OF TRANSPORTATION

501.56


502

RFD-1

LS - A MINIMUM DESIGN FOR ROADS CARRYING LOW-SPEED TRAFFIC AND FOR LOCAL AND COLLECTOR ROADS.

HS = FOR ROADS CARRYING HIGH-SPEED TRAFFIC.

W = FOR SUGGESTED WIDTHS, SEE TABLE

MAILBOXES * FOR MAILBOX SPACING AND VARIABLE LENGTH, SEE SECTION 11.2.4, MAILBOX SUPPORT AND ATTACHMENT DESIGN.

- - A MINIMUM DESIGN FOR ROADS CARRYING LOW-SPEED TRAFFIC AND FOR LOCAL AND COLLECTOR ROADS.

HIGHWAY TYPE AND ADT,	TURNOUT OR AVAIL	EATHER SURFACE ABLE SHOULDER AT X, 1 (FT.)	DISTANCE ROAD MAILBOX IS TO BEHIND EDGE O USEABLE SHOUL) BE OFFSET F TURNOUT OR
(vpd)	PREFERRED	MINIMUM	PREFERRED	MINIMUM
RURAL HIGHWAY OVER 10,000	12	8		
RURAL HIGHWAY OVER 1,500 to 10,000	12	8		0
RURAL HIGHWAY 400 to 1,500	10	8	8 TO 12	
RURAL HIGHWAY UNDER 400	8	(6) ²		7
RESIDENTIAL STREET WITHOUT CURB OR ALL-WEATHER SHOULDER	6	0.00		(10) ³
CURBED RESIDENTIAL STREET	NOT AP	PLICABLE	(8 TO 12) ⁴	(6)4

ADT=AVERAGE DAILY TRAFFIC vpd=VEHICLES PER DAY

NOTES:

- 1. IF THERE IS A NEED TO PROVIDE FOR INCREASED ACCESS, THE FOLLOWING MAY BE CONSIDERED IN CONJUNCTION WITH THE LOCAL POSTMASTER
 - A. PROVIDE A LEVEL CLEAR FLOOR SPACE 30 in. X 48 in. CENTERED ON THE BOX FOR EITHER SIDE OR FORWARD APPROACH.
 - B. PROVIDE AN ACCESSIBLE PASSAGE TO AND FROM THE MAILBOX AND PROJECTION INTO A CIRCULATION ROUTE (NO MORE THAN 4 in. IF BETWEEN 28 in. AND 80 in. AFF) SO THAT THE MAILBOX DOES NOT BECOME A PROTRUDING OBJECT FOR PEDESTRIANS WITH IMPAIRED VISION.
- 2. STRIVE FOR A 6 ft. MINIMUM: HOWEVER, IN SOME SITUATIONS THIS MAY NOT BE PRACTICAL. IN THOSES CASES, PROVIDE AS MUCH AS POSSIBLE.
- 3. IF A TURNOUT IS PROVIDED, THIS MAY REDUCE TO ZERO.
- 4. BEHIND TRAFFIC-FACE OF CURB.

SPECIFICATION REFERENCE

302

TURNOUT DETAIL

No.	T HANN	18 FT		++	41 43	+	H		+		41 50/	41 61	H	41 65		41 71	41 73	41 75	41 79	41 81	41 85	41 87	+	Н	41 98	Ė	41 102		41 108	41 110	41 114	41 116	ļ-		41 126	H	41 130	H		41 140	Н	41 144	+	41 150	Ť		41 158	
	WIDT			36	40	44	46	48	20	52	40	28	09	19 2	S 2	67	69	73	75	77	08	82	86	88	90	94	96	100	101	103	107	109	113	115) 19	120	122	126	128	132	134	136	140	141	145	147	149	153
Motified B 1 Motified B	IN ER	1	80	39	39	39	39	39	39	39	60 20	39	39	39	20 05	39	39	39	39	39	39	39	39	39	39	39	39	39	39	39	39	39	39	339	20 00	39	39	39	39	39	39	39	362	39	39	39	300	39
Maintain M			> 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.2	2.4	0. V	3.0	3.2	3.6	3.8	0.4	4.4	9.4	5.2	5.6	5.0 6.2	9.9	7.0	
No.	1TH= 48	0	rs	49	52	26	59	61	64	99	69	73	9/	78	× ×	98	88	93	95	98	103	105	100	112	115	120	122	127	129	132	137	139	157	161	165 50	173	177	185	189	193	202	206	217	222	233	239	246	270
NA	MID WID		S c	49	04 04	49	49	49	46	49	9 6	6 4	49	49	94 04	49	46	49	49	6 4 6 6 7	49	49	64	49	49	49	49	49	49	49	49	49	54	54	ť ť	55	56	57	57	58	28	59	60	09	62	63	64	89
Fig.	LANE		> 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0	2.2	2.3	2.6	2.8	3.1	3.3	3.5	4.6
California Cal	OTH=24 S AT	1@ 12	LS	33	35	38	39	4	43	44	0 0	0 4	5 5	52	40	57	29	62	9	99	69	2 5	73	75	//	8	82	85	98	88 6	91	93	96	86	S 5	103	104	108	109	120	124	127	132	134	5 4	143	145	155
NICHA 18 T NICHA-20 T NICHA-22 T NICH	ر ا `	1	유 c	33	33	33	33	33	33	33	22	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	3 5	33	33	33	33	36 36	36	36	37	37	37	38	38 28	39
MDTH= 18 FT 16 OF SIGN 2.0 CR LS w 2.0 CR LS w 2.1 CR LS w 2.2 54 59 2.1 2.3 52 59 2.1 2.4 50 59 2.2 2.5 48 59 2.2 2.6 48 59 2.2 2.7 44 59 2.2 2.8 43 59 2.3 2.9 41 59 2.3 3.1 39 59 2.3 3.1 39 59 2.3 4.1 29 62 3.0 4.2 29 62 3.0 4.2 29 66 3.2 4.3 59 2.3 3.4 35 39 2.3 4.4 2 29 66 3.2 4.5 30 82 3.8 4.6 29 66 3.2 4.7 29 68 3.2 4.8 30 73 3.4 4.9 29 71 3.3 5.0 30 82 3.8 5.1 30 82 3.8 5.2 30 82 3.8 5.3 30 82 3.8 5.4 30 83 3.9 6.5 30 84 4.6 6.6 31 102 4.7 6.7 30 80 4.5 6.8 32 106 5.0 6.8 32 106 5.0 7.1 32 106 5.0 6.8 32 106 5.0 7.1 32 107 5.2 7.2 32 108 5.2 7.3 33 122 5.3 7.4 33 122 5.3 7.5 33 127 5.3 7.7 33 127 5.3 7.8 33 127 6.3 7.9 34 133 6.8 7.9 34 133 6.8 7.9 34 133 6.8	- 1		> 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.1	2.2	2.2	2.5	2.6	2.8	2.9	3.0	3.2	3.3	3.6	3.8	ر 2 4	4.3	7. 4	
MDTH= 18 FT 16 OF SIGN 2.0 CR LS w 2.0 CR LS w 2.1 CR LS w 2.2 54 59 2.1 2.3 52 59 2.1 2.4 50 59 2.2 2.5 48 59 2.2 2.6 48 59 2.2 2.7 44 59 2.2 2.8 43 59 2.3 2.9 41 59 2.3 3.1 39 59 2.3 3.1 39 59 2.3 4.1 29 62 3.0 4.2 29 62 3.0 4.2 29 66 3.2 4.3 59 2.3 3.4 35 39 2.3 4.4 2 29 66 3.2 4.5 30 82 3.8 4.6 29 66 3.2 4.7 29 68 3.2 4.8 30 73 3.4 4.9 29 71 3.3 5.0 30 82 3.8 5.1 30 82 3.8 5.2 30 82 3.8 5.3 30 82 3.8 5.4 30 83 3.9 6.5 30 84 4.6 6.6 31 102 4.7 6.7 30 80 4.5 6.8 32 106 5.0 6.8 32 106 5.0 7.1 32 106 5.0 6.8 32 106 5.0 7.1 32 107 5.2 7.2 32 108 5.2 7.3 33 122 5.3 7.4 33 122 5.3 7.5 33 127 5.3 7.7 33 127 5.3 7.8 33 127 6.3 7.9 34 133 6.8 7.9 34 133 6.8 7.9 34 133 6.8	S (NUN)	1 @ 1	\vdash	+1	7	1			1	+	+	-	H.		+	+		55	28	60	63	+	+	H	+	Ĥ	1 1	-		-	H	85	97	66	5 5	105	107	1 [5]	113	115	Ĥ	122	127	129	135	137	140	
MDTH= 18 FT PCSOR DESIGN E(Z) CR LS w E(Z) CR LS w LC CO 0.0 0.0 2.0 59 59 2.1 2.2 54 59 2.1 2.2 56 59 2.1 2.2 52 2.2 2.2 2.3 52 2.2 2.2 2.4 59 2.1 2.2 2.5 48 59 2.2 2.6 48 59 2.2 2.6 48 59 2.2 2.6 48 59 2.2 2.6 48 59 2.2 2.7 48 59 2.2 2.8 49 2.2 3.0 40 59 2.2 4.1 29 62 3.0 4.2 29 62 3.0 <	VALENT					1		Ė	1	1	1	1.,		1 (4	·) [,,,	(,	30	30	30	30	-/-	1	.,,	1	30	- /	117	,	(")	۱۳,	30	1 33	2 33	34	34	34	3 34	34	35		35 35	35	35	36	36	36	
MDTH= 18 FT PCSOR DESIGN E(Z) CR LS w E(Z) CR LS w LC CO 0.0 0.0 2.0 59 59 2.1 2.2 54 59 2.1 2.2 56 59 2.1 2.2 52 2.2 2.2 2.3 52 2.2 2.2 2.4 59 2.1 2.2 2.5 48 59 2.2 2.6 48 59 2.2 2.6 48 59 2.2 2.6 48 59 2.2 2.6 48 59 2.2 2.7 48 59 2.2 2.8 49 2.2 3.0 40 59 2.2 4.1 29 62 3.0 4.2 29 62 3.0 <	0 FT E EQUI	.01					Н		+		+		0.0	0.0	5 6	0	0.0		0.0	0 0	2.0	+	1 2	H	2.2	2.	2 0	12	2					3.	ν, κ.	Н		2 2	-	4 4	H	4 4	4		.5.			9
MDTH= 18 FT PESION E(Z) CR LS w LC LS LS LS	IDTH-2 FTWAR	10	\vdash	++	+	+	\mathbb{H}		4	+	+	_	H	44	2 4	48	49	3 52	3 53	3 55	63	+	+	Н	73	74	76	8 / 0	8	88 83	2 87	98	93	2 95	\$ 6	3 (0)	2 70.	10,	3 109	211.3	3 115	3 117	122	127	128	5 132	13.5	3 147
MUDTH= 18 NUC OR LS NUC OR LS NUC OR CS 2.1 CS 2.2 CS 2.3 CS 2.4 CS 2.5 CS 2.6 CS 2.7 CS 2.7 CS 2.7 CS 2.8 CS 2.				+	+	+	Н		3 28	25	7 0		2	25	2 2	28	7 28	3 28	3 28	25	3(7	+	H	,	H	5 2	3 10	3,	V (c	32	33,	3,5	3.	0 t	3.	3, 3,	3.5	3,	ر ري ري	3,	3,5	3,5	3,	2 L	3.5	35 25	3(
MOTH MATH MATH MATH MATH MATH MATH MATH MA	2	ō	\vdash	++	+	+	Н	2.	+	+	7 0	2 2	2	2.0	7 0	3.2	9 2.7	3 2.7	3.2	2.5	2	20 1	J 10	H					3.	w w	3.		-	Н	+	4	4 4	4.	4. 1	ν _{ιν}	-	v, v	5 6		4 6.	7 6.		7.
C C C C C C C C C C C C C C C C C C C	WIDTH=	1 @	\vdash			+	\vdash		+	+	+	-	-		+	1	3 56	2 2 55	5.	0 6	9 6	6	စ် ဖိ ၈ ၈	Н		Н	7 7		0 78	00			+	\vdash	9 9	96	36 5	5 5		,	2 11	2 11;	3 2	3 11(3 2	3 12	4 13	
				\mathbb{H}	+	+	Н	2	9	~ 0	x) c	0 0) -	2.2	J 4	1.7	5.6	2 3	6.9	0 3	.2 2	5 2	4 3	Ш			. /	.2 3	5.3	4. C	ļ.,	- / -			- 0		4 (5.6	,,	1.7	5.0	2 2 3	4 Li	4.	ن ه. در ای	.7 3	ω o	i i
 	DESIGN VELOCITY	-20	(FT)				Ħ							701 3	650	626 3	604 3	582 3	543 3	524 4	489 4	T		П			1									Ħ						7 7 7	164 7	158 7	146 7	139 7		

20 MPH DESIGN SPEED

VIRGINIA DEPARTMENT OF TRANSPORTATION

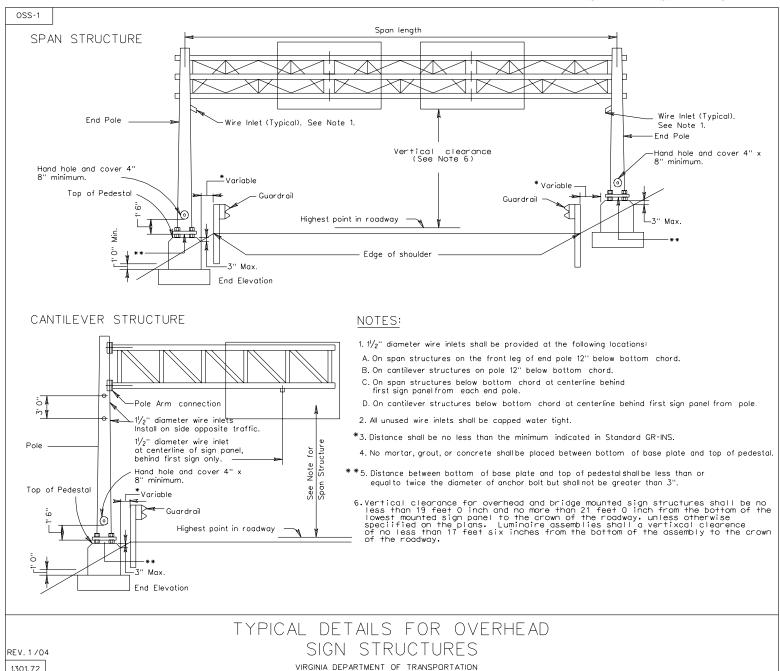
REV. 1/04 802.34

																										_											_													TC-5.01
MPS	FT	rs	0 24	45	48	3 5	54	29	28	63	65	67	99	73	75	0 6	82	84	9 00 00	86	93	92	66	101	103	305	110	112	116	118	120	125	127	129	133	135	140	142	144	4 6	150	153	155	159	161	163	168 168	170	172	-UES.
AX. ange ran width	lω		0 2	43	43	δ 2 4 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	43	43	4 م در	43	43	43	δ 4 8	43	43	5 4	43	43	4 4	43	43	54 2	φ γ γ	43	24 6	5 4	43	43	43	43	43	4 43	43	2 4 2 4 3	43	43	2 4 2 4 5	43	43	5 4	43	43	2 4 5	5 4	43	43	2 4 2 4 5	43	43	w VALUES.
∑ }	FT	LS	0 4	42	44	4 4 8	50	52	56	58	9	62	66	68	202	74	9/	78	20 00	84	98	88	92	94	96	001	102	104	108	110	112	116	118	120	124	126	128	132	134	138	140	142	144	148	150	152	156	158	160	S, AND
	16	R	0 4	40	40	94	40	40	40	40	40	40	40	40	40	4 04	40	40	04 4 0	40	40	40	9 4	40	9 5	5 6	40	04	40	40	40	9	40	04	40	40	40 40	40	40	0 1 1 1	40	40	404	1 04	40	40	04	40	40	CR, LS
= L			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0	2.7	2.4	2.6	2.8	3.2	3.4	3.6	4.0	4.6	5.6	ING E.
) USING WIDTH-48 FT H)	2 @ 12	LS	0 2	54	57	9 69	65	67	2 2	75	78	80	85	88	30	S 9	86	101	10.5	801	11	41.	119	121	124	129	132	134	139	142	144	150	152	155	160	162	165	170	187	196	198	203	207	216	221	225	231	243	254	SPON
(RURAL) USING FT WIDTH-48 F LANE WIDTH)			0 %	52	52	52	52	52	52	52	52	52	52	52	52	52	52	52	52	52	52	52	52	52	52	52	52	52	52	52	52	52	52	52	52	52	52	52	56	57	57	28	200	20 03	59	9	9 50	62	64	THE MINIMUM ALLOWABLE RADIUS FOR THE CORRESPONDING E, CR, LS, AND
FT ANE WI		>	0.0	0.0	0.0	0 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0	2.3	2.8	THE A
MDTH-24 FT LANES AT LANE	0 12	rs	0 %	36	38	04 4	43	45	7 4 4	202	52	54	57	59	09	20	99	67	69	72	74	76	20 05	81	83	\$6	88	90	93	95	96	8 00	102	103	107	108	110	114	115	10	120	122	124	127	129	131	14.3	149	154	JS FOF
WIDT	-	C.R.	0 %	35	35	35	35	35	35	35	35	35	35	35	35	25	35	35	35	35	35	35	35	35	35	35	35	35	35	35	35	35	35	35	35	35	35	35	35	35	35	35	35	35	35	35	38 58	38	39	. RADIL
OF 25 FT		>	0.0	0.0	0.0	0 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0 0	0.0	0.0	0.0	0.0	0.0	0.0	0 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0 0		0.0	0.0		2.0	7.7	2.2	2.3	2.4	2.6	2.7	2.8	3.1	3.3	3.8)WABLE
PEED OF WIDTH-22 FT	1@ 11'	LS	22	33	35	/ 285	40	41	43	46	48	49	52	54	22	0.00	09	62	50	99	89	2 3	73	74	76	/ 6/	20	82	85	87	88 8	92	93	95	98	66	10.3	104	115	120	121	124	126 128	131	133	135	138	143	148	A ALLO
SPEED WIDTH-2			0 %	32	32	32 55	32	32	32	32	32	32	32	32	32	32 25	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	35	S 75	35	35	35	38	36	36	36	37	37	MINIMUN
Z	-	>	0.0	0.0		0.0			0.0		0.0	0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	2.0	2.0	2.1	2.2	2.2	2.3	2.4	2.5	2.5	2.7	2.7	2.8	2.9	3.0	7.0	3.2	3.3	3.4	3.6	3.7	3.8	0.4	4.3	4.8	呈
			0 0	30	32	35	36	38	39	42	43	45	440	49	200	5.3	55	56	20 00	09	62	63	59 66	68	69	2 62	28	83	86	88	06 8	93	95	97	101	103	10.3	108	111	115	116	119	121	125	127	130		+	142	SI SOIO
WIDTI OF TV	5 -	S.	0 0 0	29	29	50	29	59	29	29	29	29	29	29	29	200	29	29	50	29	29	29	29	29	29	32	32	32	32	32	33	33	33	33	33	33	33	33	34	34	34	34	34	34	34	35	35	Н	36	ED RAD
FT FOR S		+	0.0	2.0	0	1.0	2.1	2.1	2.1	2.2	2.2	5.3	2.5	4.2	4 .	4	5.5	9.5	9 9	2 /	2.7	7. 0	00 00	6.2	2.9		3.0	3.1	5.2	3.2	5.3	4.0	3.5	5.5	5.7	5.7	8.8	5.9	0.	- 0	4.2	1.3	4.4	0 4	1.7	4.8	5.0	5.3	8.9	. LISTE
ORS 1- 18 F	6 0	(0)	0 %	74	74	4 4	74	74	4 4 4	74	74 2	74	4 4/	74	44	1 4	74	74 ,	74	74	74	44	4 4 4	74	74	75	77	6/8	82	84	98	00 68	91	95	97	86	100	104	106	110	1 = 1	114 4	116	+	122 4	-	_	132 5	-	I FEET
FACTORS WIDTH- 18 F	-	~	0 %	7 [89 1	65	09	57	55	52	20	84 1	45	44	543	404	39	38	7,2	36	35	34	33	32	31	30	31	31	31	31	31	31	31	52	32	32	52	32	32	32	32	33	33	33	33	33		34	-	VALUES IN FEET. LISTED RADIUS
\neg		_	2 NC			2.5	\sqcup	4	2.7	2.9	3.0	3.1	3.3	3.4	3.5	3.0	3.8	3.9). 1.4	4.2	4.3	4.4	U. 4.0	4.7	8 0	5.0	5.1	5.2	5.4	5.5	5.6	2.8	5.9	6.0	6.2	6.3	6.4	9.9	6.7	0 0	7.0	7.1	7.2	7.7	7.5	7.6		7.9		w VAL
DESIGN DESIGN VELOCITY	=25		+	Н	+	+	\forall	+		+		+		H	+		3	2	D 4	- 0		4 (7 2	7	2 2	2 2			2 2	80	2 1	3		1	Н	6	, 9	وا	- "	0 10	Н	\vdash	- α	+	H	-		Н	1	۰ŏ
O PE	i	RADIUS(FT)	2500	166	157	15C	136	130	125	114	110	100	98	94	9	85.	82	79.	74	72	969	67.	63	612	59.	55	53	519	48	468	45	42	40	383	37	35	33	32	31,	2 0	286	27	267	24,	23	22	202	196	17	NOTE: CR, LS
SPECIFI REFER	ICATIO RENCE	ON								•			•			Τ	R	Α	Ν:	SI	Т	IC	N		Cl	JF	5/	/ E	S		_	R	2U	Ŕ.	ΑL	_				•										

25 MPH DESIGN SPEED

VIRGINIA DEPARTMENT OF TRANSPORTATION

REV. 1/04


802.35

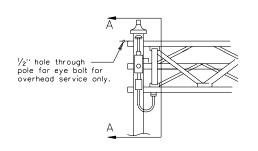
RAMPS			CS O	848	53	53	28	09	63	65	200	72	75	80	82	87	88	95	96	66	101	106	108	# 1	116	118	123	128	130	132	137	140	14 4	147	152	156	159	161	166	168	173	176	178	183	185	190	192
	- 19		<u>د</u> ه	48	48	48	48	48	48	48	84 84	48	4 4 8 4 8 A	48	48	84 8	48	48	48	48	48	84 8	48	8 4 8	48	48	48	48	48	8 4	48	48	48	48	48	84 48	48	8 4 8	48	48	δ 4 8	48	48	φ 4 8 8	48	84 48	48
INTERCHANGE	WIDTH	T.	CS o	46	50	50	52	57	59	19	66	89	70	75	77	79	84	98	88	93	95	100	102	104	109	111	115	120	122	124	129	131	136	138	142	145	149	151	156	158	16.3	165	167	172	174	176	181
INTER			ر ا	46	46	46	46	46	46	46	46	46	46	46	46	46	46	46	46	46	46	46	46	46	46	46	46	46	46	46	46	46	46	46	46	46	46	46	46	46	4 4	46	46	46	46	46	46
F	1	- 1	≯ 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.1	2.4	3.0	
WIDTH-72	-		S o	78	98	98	90	97	101	105	113	117	120	128	132	136	144	148	151	159	163	12/2	175	182	186	190	198	206	210	213	221	225	233	237	244	248	256	260	268	271	279	283	287	312	318	332	344
WIDT		∾ -	g 0	78	78	78	8/ 8/	78	78	9 2	8 8	78	8 %	78	78	8/8	78	78	78	78	92	20 00	78	78	78	78	78	0/8/	78	28	78	78	78	8/ 8/	\top	20 80	\vdash	-	78	78	ν (8 78	78	78	83	83	85	86
F	÷		× 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	2.0	2.6
WIDTH-48	-	Ø 12	S o	59	64	64	70	73	9/	79	85	88	90	96	66	105	108	111	114	120	122	128	131	134	140	143	149	154	157	160	166	169	175	178	183	98	192	195 801	201	204	210	212	215	221	224	227/	258
MIDI	LANE	2	ر ا ا	59	29	59	50 50	59	59	59	59	59	20	59	59	29	59	29	59	59	59	50 00	59	59	59	59	59	29	59	59	59	59	59	59	59	29	59	59	59	59	62	59	59	20	59	59	Н
	S AT		× 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	
WIDTH-24	LANE	0 12'	S o	+	43	+	45	+	H	53	-	59	+	+	99	+	72	74	76	80	82	86	88	90	93	95	66	103	105	107	111	113	112	119	122	126		_	134	136	140	142	144	148	150	151	Н
<u></u>	R OF		ر ا ا	339	339	39	339	39	39	39	39	39	39	39	39	39	39	39	39	39	339	339	39	39	39	39	39	39	39	39	39	39	39	39	39	39	39	39	39	39	80 8	39	39	39	39	39	39
-	NOMBE	\dashv	» O.O	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0	
-22 F	ITS (I	11.	C C	+	20 04 40 04		41 44	45	H	+	52 (54	55	29 (61	53	36 (98	2/0	73	75	/ 02	08	32 (36 (37 (91	35	96	86 5	00 (03 (070	60 0	5 2	16 1	18	2 6	23 (25 (2, 20	30 (32 (35 (37 (53	H
WID1H-22	VALEN		R) 0	+	+	36 ,	929	36	99	36	36	36 5	36	36 !	92	36 6	99	99	36	36	36	92 92	36 8	36 8	36 8	36 8	92	92	36	36	36 1	36 1	36	36 1	36	36 1	36 1	36	36 1	36 1	26 1	36 1	36 1	26 1	36 1	39 1	H
_	DESIGN SOFTWARE EQUIVALENTS (NUMBER OF LANES	\dashv	* O.O	1		0 0	0 0	0.0	0.0	0.0	0 0	0.0	0 0	0.0	0.0	0 0	0.0	0.0	0 0	0.0	0.0	0 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0 0	2 -	- 2	2.2	2.2	.3	4.4	4 ru	.5	9.6	, ,	00 0	3.0	2
-20 F	I WARE	<u>.</u>	S 0	++	56	99	80 0	41	15	4 0	46 0	\vdash	50 0	54 (0 50	/ 69	000	32 (55	7.5	80 5	2 2	73	2,2	78	3 80	33	36	88	68 28	32 (94	27.	60 0	5 5	υ <u>Γ</u>	19	20 20	25 2	27	2 5	33 2	35 2	20 04	142	145	Н
WIDTH-20	SOF	- -	光 -		23.5	53	23 23	53	53 4	53	53 4	53 4	33	33 E	53	53 53	33 6	33 6	53	33 6	53	2 2	33	53	33 7	53 8	33	33	33 8	53	53 6	53	36	36	26	2 92	37 1	36 1.	57 1:	1 72	2 2	57 1.	57 1.	57 -	1 7	2 8 2 8	1
\exists	ESIGN	\dashv	» 0		0.0	0.0	0.0	0 0	0.	0,0	0 -	-		2	2	2 0	i 12	5.	wi w	9 4	4	4 4	5	رن ر در	9.	9 9	9 1	, ,	7.	00 0	o	o, σ	. 0	0 0) <u>-</u>	- 0	.2	2 2	5 55	4	4 rc	i	9.	· /	ω ₁	o O	
<u>¤</u>		5	r o		- 6 0	H	34 0	+		3	3 2	3 2	2 0	3 2	3 2	2 2	3 2	3 2	2 6	3 2	3	2 6	3 2	2 5	3 2	3 2	3	2 6	3 2	2 2	3 2	3 2	3 2	4 4 K	200	112 3	3 3	5 2	19 3	21 3	ე ჩე ე გე	3 5	9 3	2 5	36	141 4	Н
-HI (IM		-	_		3 0	3	0 0	3 103	5	0 9	4 Z		5 5	3 5		9 8 Q Q	5 0	5 10.	5 0	1 -	6	2 2	9	5 5	3 10.	2 0 0	5 5) (c)	9	6 5	7 0	5 5	9 6	5 5	5 5	2 2	11	5 5	1 =	7 2	0 10	5 12	5 12	0 0	(5)	36 13 36 14	5 4
		_	S 0	1	2 2	2 3	ω _k	1 00	9	7	0 6	69 0	1 6	3 6	4 6	n n	7	8	0 0	1	2 .	2 4	4	9 4	8	9 C	4	3 6	4	20 10	3 3	80 G	9 0	- C	2 5	4 10	6 3	V 00	0 6	0 3	- 6	3 3	4 3	0 60	7	უ რ თ თ	0
Z.	∑ITY 5		(;) (;)	5.0	2.:	2	2 5	2.5			2.5	3.(w k	3.5	3.	3.6	n	3.6	3.	4	4	4 4	4	4 4	4.	7. 4	(c)	5 0	5.		2	5.5	9	9 0	9	و و	6.6	<u>ن</u> ن	9.9	7.(-	7		7.	-	7.	9.0
DESIC	VELOCITY -35	5	RADIUS(FT) 5000	3149	2865	2835	2698	2457	2350	2251	2159	1993	1917	1780	1717	1658	1548	1497	1449	1359	1317	12.77	1201	1165	1097	1065	1004	975	918	891	838	813	766	743	701	089	641	622	585	567	532	515	497	480	442	397	350
SPEC		TION												<u>l</u> T	L R	_ 1A	15	Ш 31 [°]	_ <u> </u> T10	L 01	Л Л		ll Cl	_ JR	Ш V I	LL ES			Ц R	<u> </u>	LI Ra	LL AL															

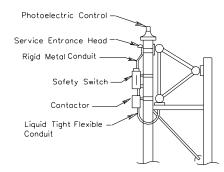
TRANSITION CURVES - RURAL 35 MPH DESIGN SPEED

VIRGINIA DEPARTMENT OF TRANSPORTATION

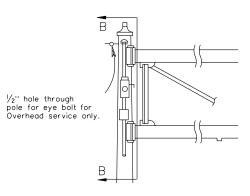
REV. 1/04

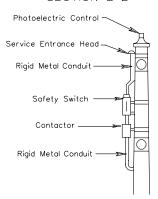
1301.72


0SS-1


ELECTRIC DETAILS FOR SIGN LIGHTING

SPAN SIGN STRUCTURE

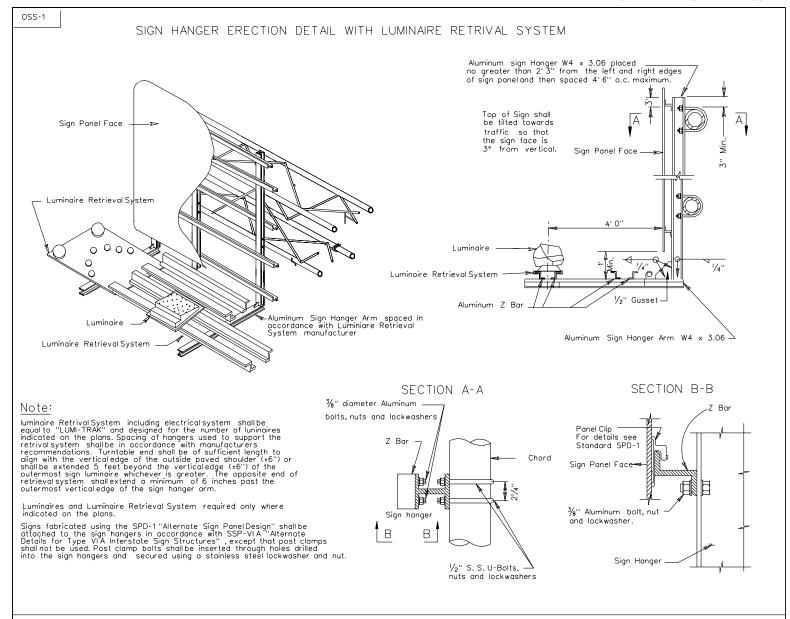




CANTILEVER SIGN STRUCTURE

FRONT VIEW

Note:

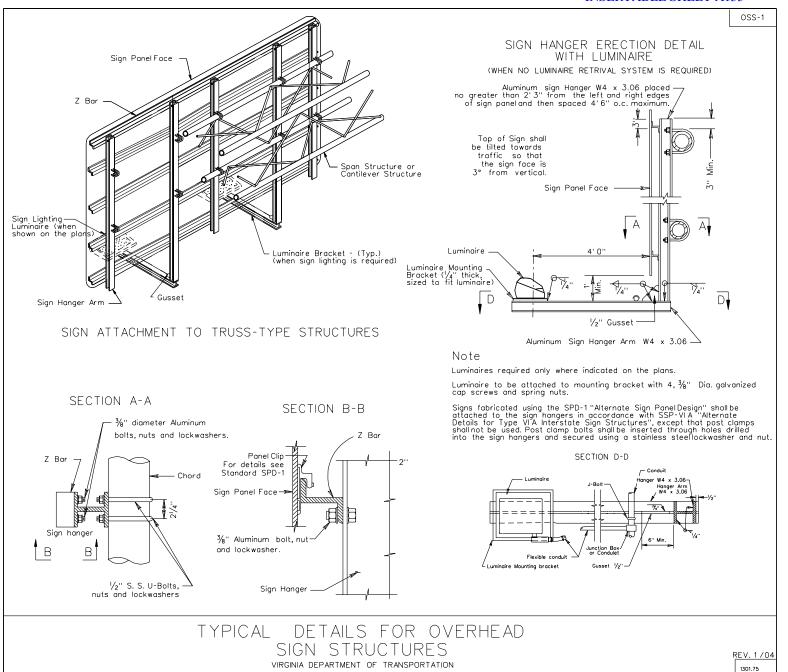

A safety switch shall be installed on all sign structures requiring electrical power. Electrical service for sign structures not controlled by a control center shall be have a photocell and a photocell controlled contactor to control the electrical power to luminaires. The contactor shall be in a NEMA 3R enclosure within 24 inches of the safety switch.

All conduit located in or on overhead sign structure shall be $\frac{3}{4}$ " minimum.

TYPICAL DETAILS FOR OVERHEAD SIGN STRUCTURES

VIRGINIA DEPARTMENT OF TRANSPORTATION

REV. 1/04



REV. 1/04

1301.74

TYPICAL DETAILS FOR OVERHEAD SIGN STRUCTURES

VIRGINIA DEPARTMENT OF TRANSPORTATION

