
An experience in high productivity lidar mapping TRB Summer Meeting

noiser modelling July 11, 2006

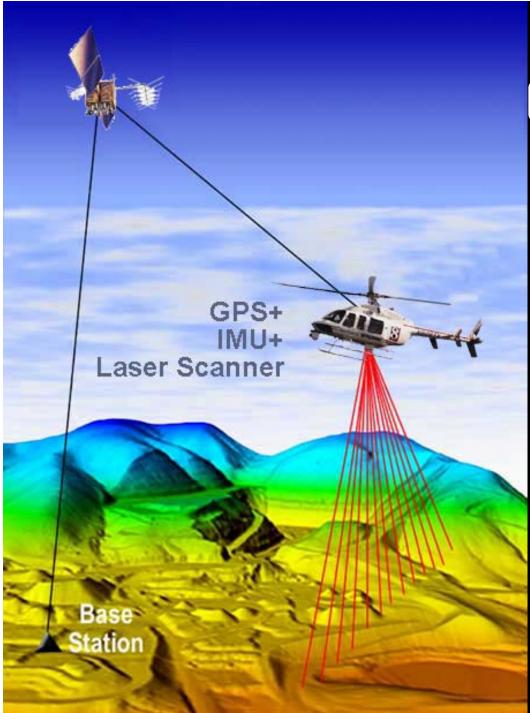
Presented by: Douglas Tommasi Crudeli

Noise mapping as a regulatory requirement (Italy)

Updated 3D survey Data

• Italy has a very dense population → practically every highway/freeway passes through many urban areas

• New buildings are erected even near existing highways \rightarrow cartography is outdated already after a couple of years

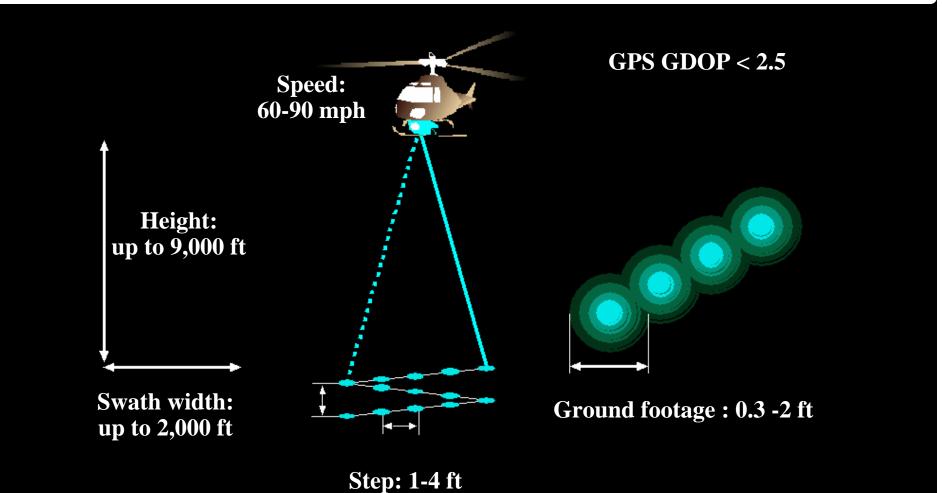

•Building density in urban areas: up to 1.000 per square mile

- Available national data (like USGS in US) is outdated (>3years)
- Distances to be surveyed:
 - at least 820 ft per side from the roads
 - \rightarrow about 1800 ft overall
 - •Traditional survey too expensive and takes too long

- Aerial photogrammetry is very precise but takes long and is expensive
- An excellent compromise is a Lidar acquisition

Acquired data:

- Airborne laser ranger (distance)
- GPS (position)
- Inertial Unit (angles)

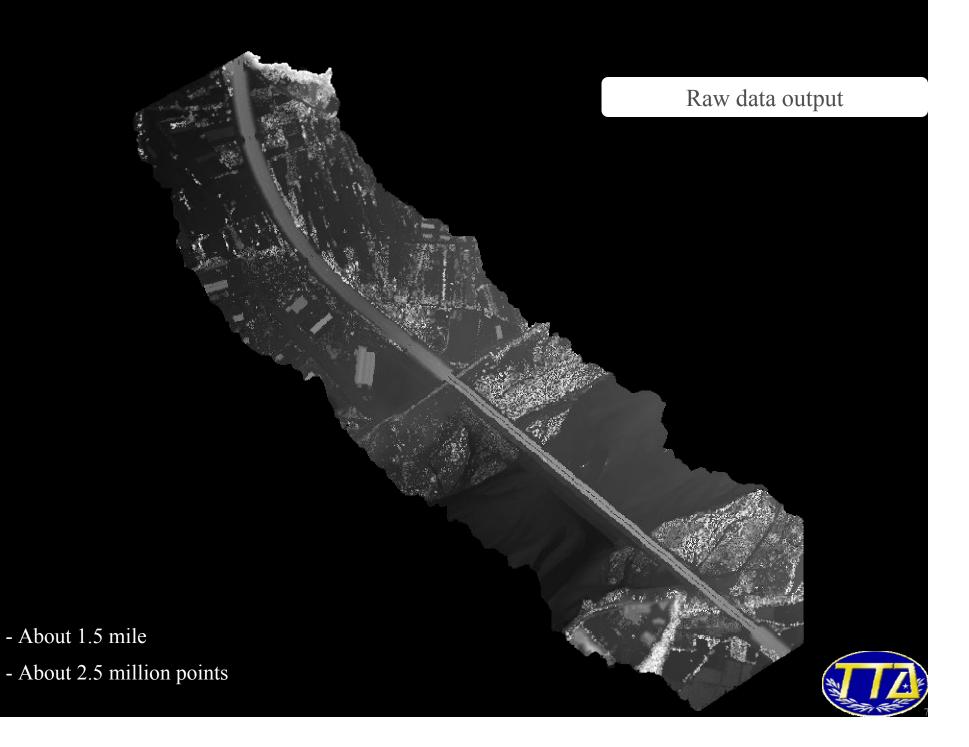

It is possible to obtain ground points directly in WGS84/UTM

Lidar concepts

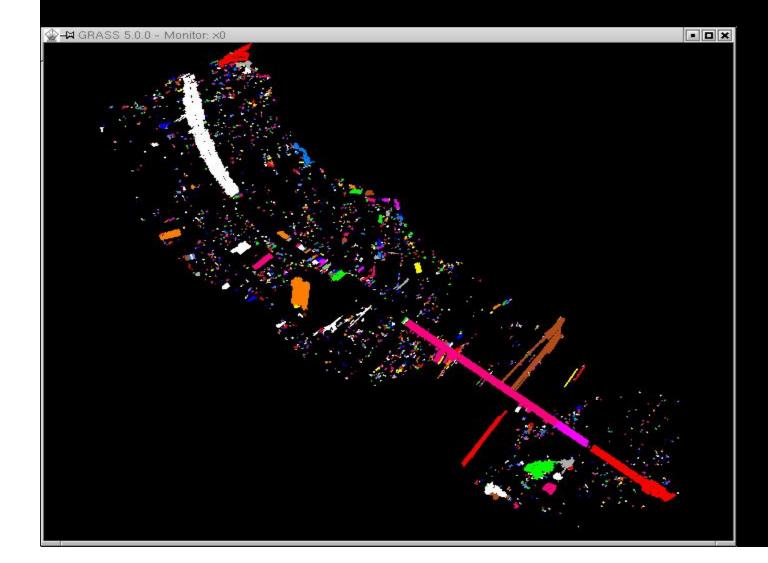
System specifications & typical performances

- Acquisition rate: up to 100,000 points per second
- Point density: 1 to 4+ pt/sqm (more points, higher costs)
- Point precision: 0.3-0.5 ft rms

Auxiliary digital pictures

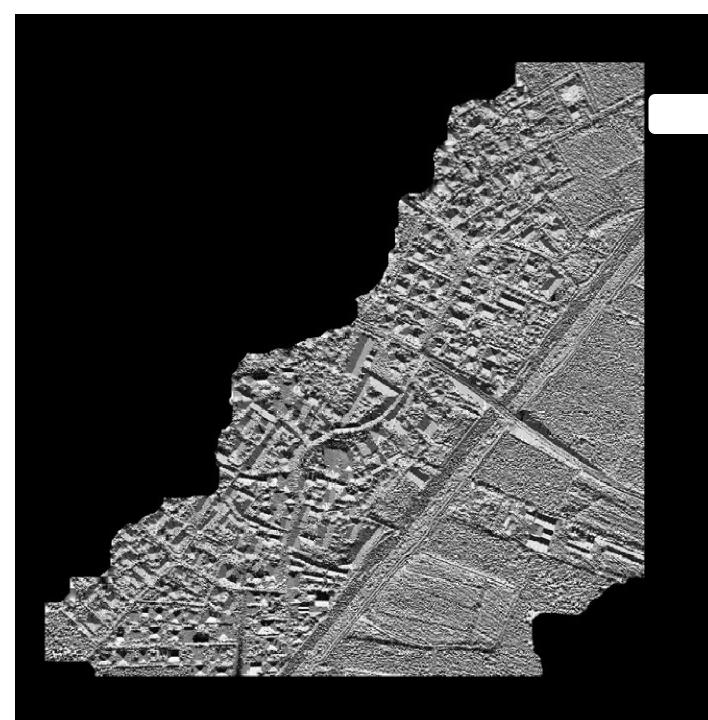

😅 🔜 🗙 | 🐇 🖻 🖻 🗠 🕕 🍳 🗨 👄 🗊 🗓 9/9

al

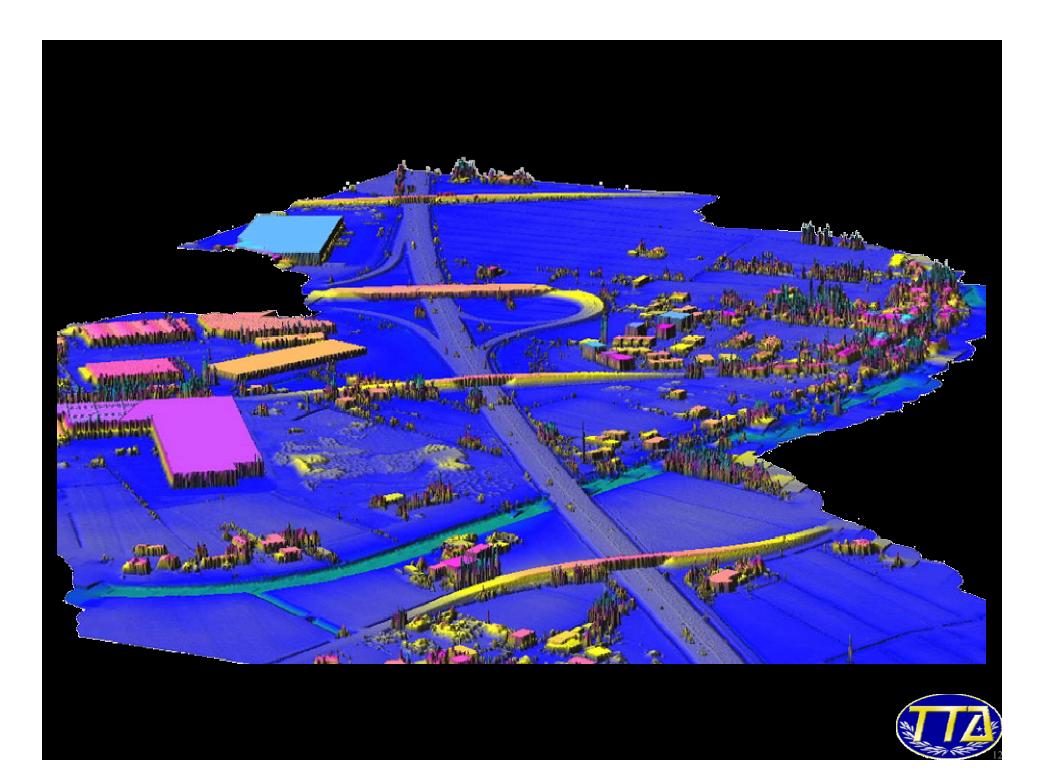

3056 x 2032 x 24 BPP

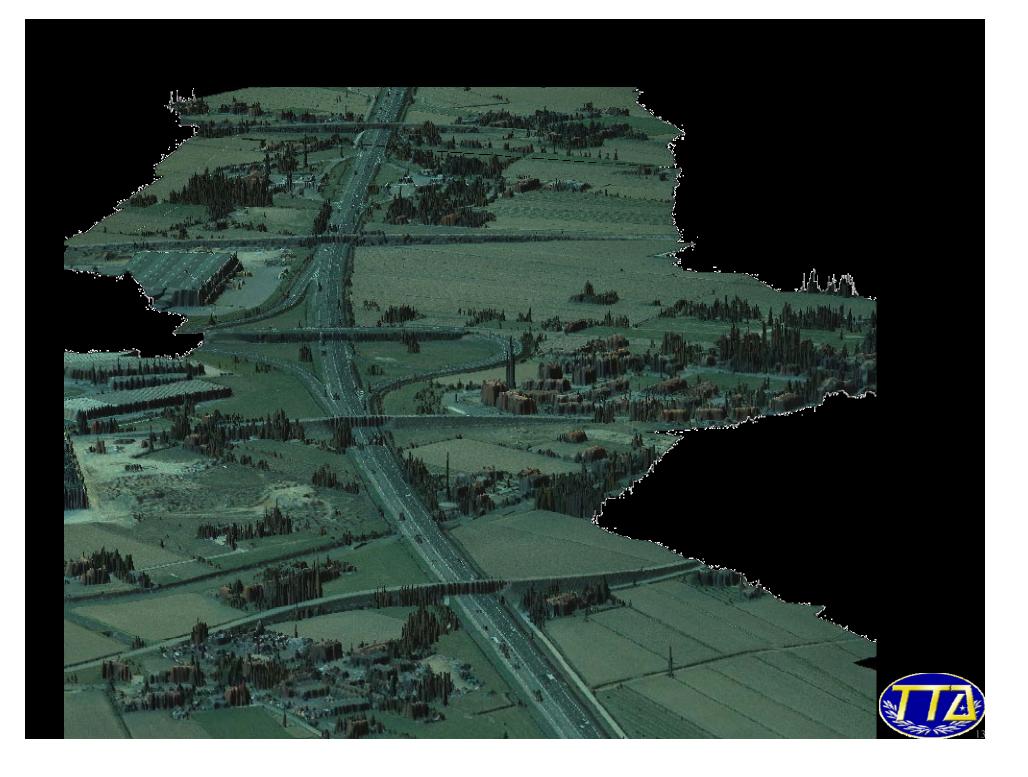
9/9 140 % 4.35 MB / 17.77 MB 11/09/2000 / 17:10:02

Color, RGB (20 Mpx) or RGB+IR/ 8-16 bit/channel (24-48 bits in RGB) Ground resolution: 0.3 - 3 ft/pixel GPS position and orientation

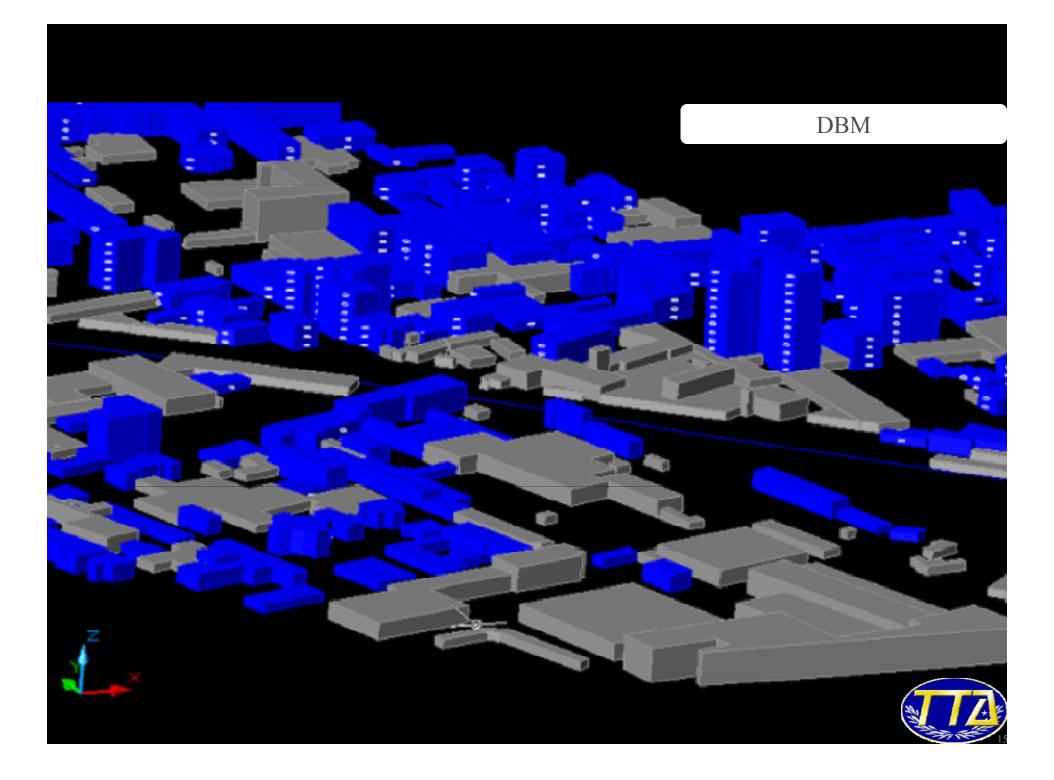


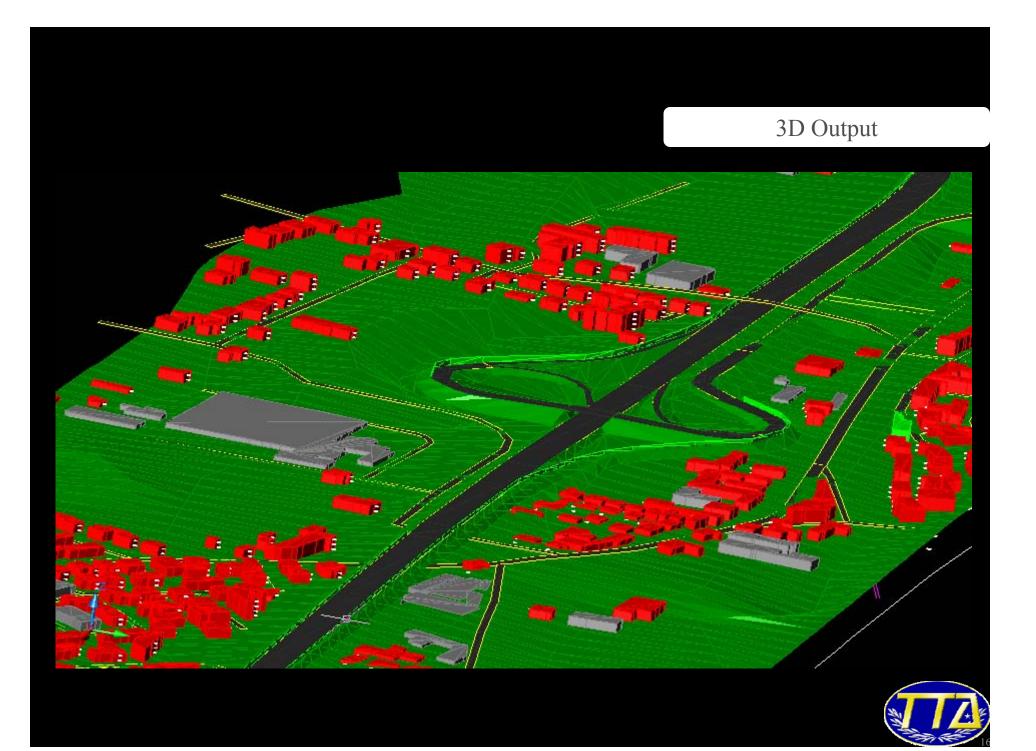
Object recognition


Aspects map



Building occupation



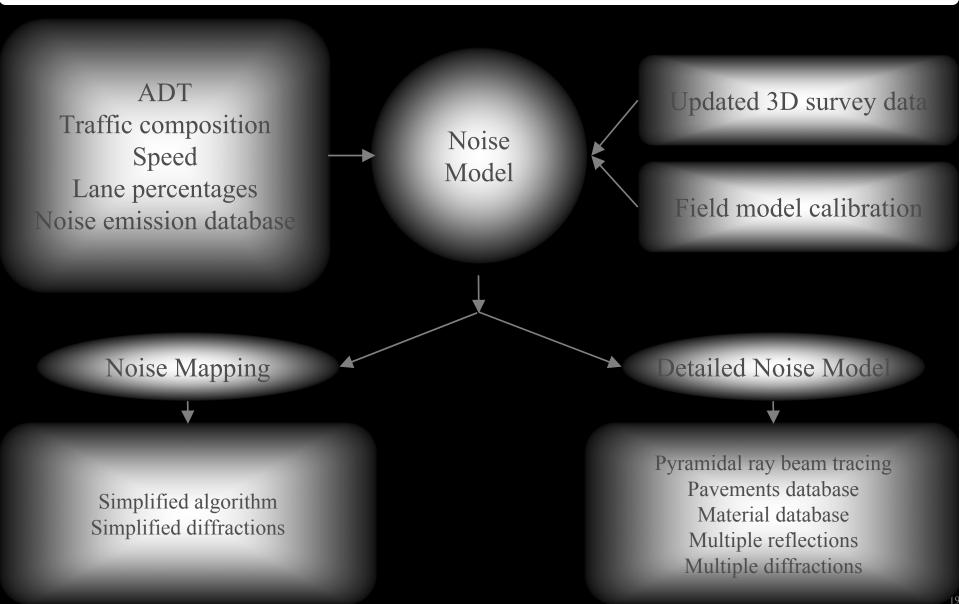


Regulatory requirements

New roads

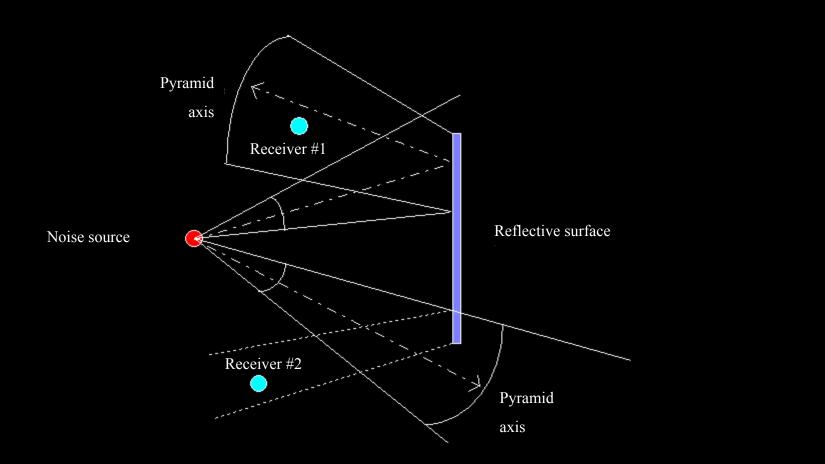
			Sensible	receptors	Other receptors			
	Road class	Width	Day	Night	Day	Night		
		[ft]	[dBA]	[dBA]	[dBA]	[dBA]		
A	Toll highway	820	50	40	65	55		
B	Freeways	820	50	40	65	55		
С	Interstate - main	820	50	40	65	55		
D	Interstate - secondary	500	50	40	65	55		
E	Local - main	100	50	40	65	55		
F	Local	100	50	40	65	55		

Width: always 1640 ft

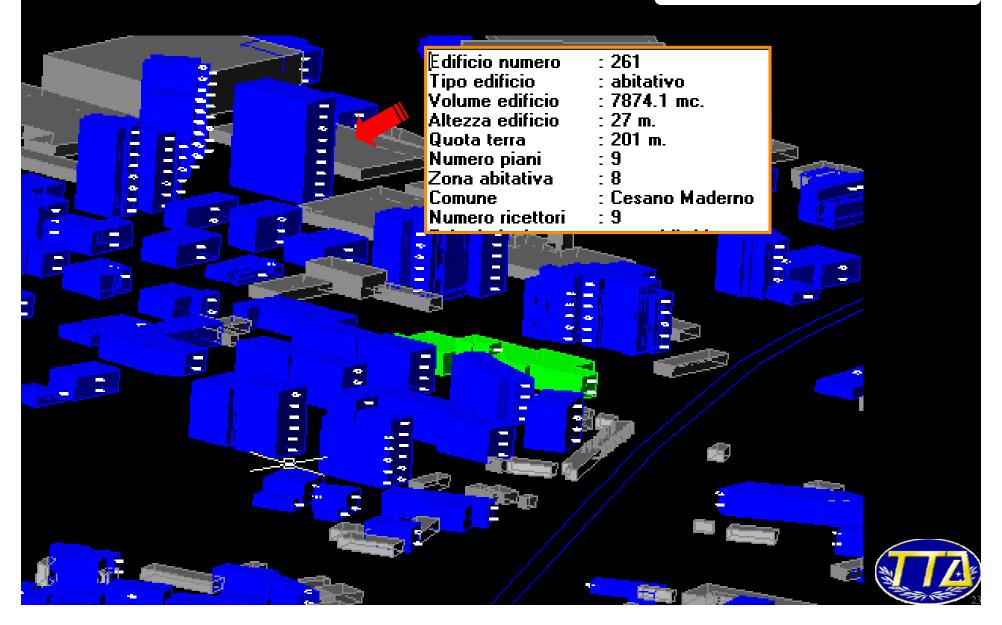

Regulatory requirements


Existing roads

			Sensible	receptors	Other re	ceptors
	Road class	Width	Day	Night	Day	Night
		[ft]	[dBA]	[dBA]	[dBA]	[dBA]
Λ	Toll highway	280	50	40	(70)	60
A		820	50	40	65	(55)
P	Freeways	280	50	40-	70	60
D		820	50	40	65	55
C	Interstate - main	280	50	40-	70	60
C		820	50	40	65	55
Л	Interstate - secondary	280	50	40-	70	60
		500	50	40	65	55
E	Local - main	100	50	40	65	55
F	Local	100	50	40	65	55


Noise modelling

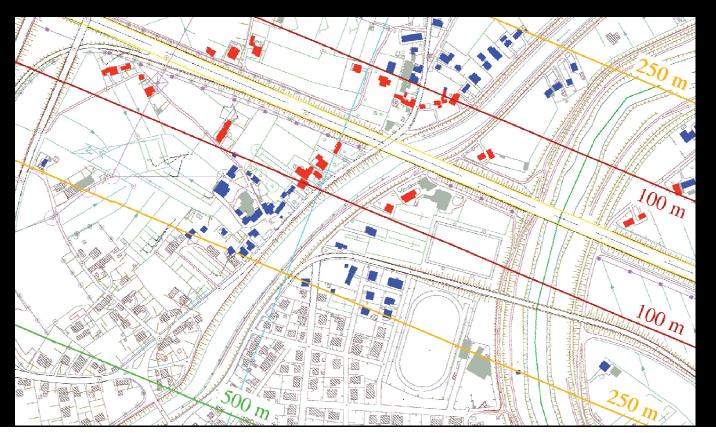
Model Flowchart


Example

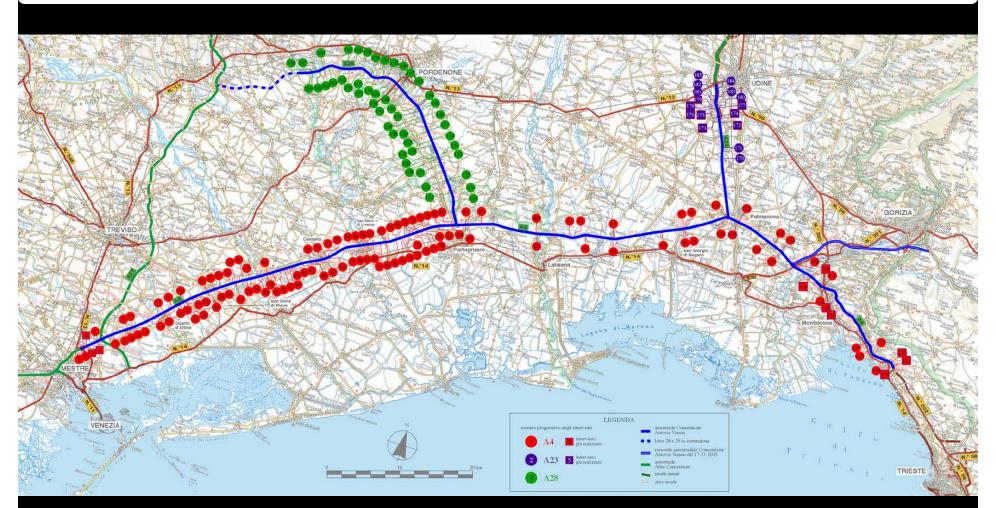
🗮 Editazione dati traffico	ferroviario										
😹 Editazione dati traffi											
Selezione Tratto Strad	ale										
Tratto n. 23 Nome	: TANGENZIALE										
Preced. Suc	Fine					Data input					
Leq,7.5m (G/N) 76,5	eq,7.5m (G/N) 76,5 68,5 O Fisso O Calcola										
Proprietà											
Tipo di Pavimentazione	1-Asfalto Liscio ▼										
Pendenza (%, + -)											
	0-5%										
hmed edifici lato Sinist	ro 6 🛛										
hmed edifici lato Destr	0										
⊺Traffico diurno comp	⊐ N	laterial Mana	iger 1.4 - R	amsete	e.mat		•				
N.autovetture (V1)				<u> </u>							
N.camion 2 assi (V2)	ο.ο	0 R Upo	date File		Quit						
N.camion 3 assi (V3)											
	N. Frequency (Hz)	Color 3	81.5 63		250 500 1k 2		16k 🕇				
(· · · · ·	0 Nessuno	800000 0).0 0.0			.0 0.0 0.0	0.0				
N.motocicli (V5	1 intonaco calce (s.r.)	-	0.03 0.06			.09 0.14 0.23	0.28				
	2 intonaco ruvido	-).01 0.01			.04 0.03 0.02	0.02				
⊺ Traffico notturno cor	3 intonaco liscio	-	0.01 0.02			.04 0.03 0.02	0.02				
N.autovetture (V1)	4 int. calce fresco (T.R.)	-			0.04 🔀 DisiaPyr	Launcher					
	5 int. calce maturo (T.R.) 6 int. calce degrad.(T.R.)).01 0.02).03 0.05		0.04						
N.camion 2 assi (V2)	7 int. gesso lisciato legno (P)).03 0.03).02 0.03		0.05	C:\DISIA\CARTO	GRAVPIPPO.RA				
N.camion 3 assi (V3)	8 int. gesso lisciato ferro	-).01 0.01		0.03		1				
N.TIB (V4)	9 piastrelle stuccate (q)	-	0.02 0.03		0.03 Level:	3	Save	$LOD: 2^N$			
	10 legno di pino (C)		0.05 0.1		0.1						
N.motocicli (V5)	11 legno verniciato (g)).06 0.11		0.12 Time (s):	1	<u>H</u> elp				
	12 legno compensato (C)).06 0.11		0.11						
Cat.A - Autostrada	13 pavimento legno poroso	400040 0).01 0.02	0.03 (0.04 Humidity	(%): 50	About	<u>C</u> ancel			
Cat C. Entrande an	14 pavimento legno duro	800000 0).05 0.09	0.09 (0.1	••					
Cat.C - Extraurb. se	15 pavimento marmo (B)	-).01 0.01			.03 0.04 0.05	0.06				
Cat.E - Urbana quar	16 pavimento moquette (B)	-	0.03 0.05			.3 0.59 0.5	0.6				
	17 pavimento moquette (C)	-	0.03 0.07			.3 0.35 0.36	0.43				
	18 pavimento gomma (B)					.1 0.05 0.05	0.06				
	19 pavimento linoleum (m)					.04 0.05 0.06	0.07				
	20 pavimento in cemento (g) 21 pavimento sughero cerato (C)).01 0.01).02 0.03			.02 0.02 0.02 .07 0.02 0.01	0.02				
	22 tende velluto a 20 cm (C/B)		0.02 0.03 0.01 0.03			.4 0.35 0.28	0.34				
	23 tende velluto tese (C)).01 0.03			.38 0.36 0.36	0.43				
	24 Unita'ass.ti poltrona in cuoio (P)		0.08 0.16			.29 0.25 0.22					
	25 tappezz. stoffa (B)		0.01 0.02			.24 0.35 0.42					

3D Data & associated database

Overexposed buildings


Casa n.	Piano n.	A] - Situazione attuale [dB(A)]			B] - Situazione post interventi di bonifica [dB(A)]				Efficacia interventi di bonifica acustica		
		day		night		day		night		day	night
174	2° piano	66.8		61.8	*	58.0		53.0		8.8	8.8
180	Piano terra	54.4		49.4		50.2		45.2		4.2	4.2
180	1° piano	54.8		49.8		51.2		46.2		3.6	3.6
182	Piano terra	66.2		61.2	*	56.1		51.1		10.1	10.1
182	1° piano	67.8		62.8	*	56.9		51.9		10.9	10.9
183	Piano terra	67.5		62.5	*	52.2		47.2		15.3	15.3
184	Piano terra	69.5		64.5	*	62.0		57.0		7.5	7.5
184	1° piano	69.6		64.6	*	63.0		58.0		6.6	6.6
192	Piano terra	62.4		57.4		48.3		43.3		14.1	14.1
201	Piano terra	77.8	*	72.8	*	69.5		64.5	*	8.3	8.3
210	Piano terra	60.4		55.4		48.3		43.3		12.1	12.1
210	1° piano	60.4		55.4		49.7		44.7		10.7	10.7
212	Piano terra	69.2		64.2	*	63.5		58.5		5.7	5.7
212	1° piano	69.0		64.0	*	65.4		59.6		3.6	4.4
214	Piano terra	61.7		56.7		49.6		44.6		12.1	12.1
214	1° piano	63.5		58.5		50.5		45.5		13.0	13.0
214	2° piano	63.9		58.9		51.7		46.7		12.2	12.2
222	Piano terra	70.8	*	65.8	*	61.2		56.2		9.6	9.6
222	1° piano	70.6	*	65.6	*	63.7		58.7		6.9	6.9
31	Piano terra	42.5		37.5		42.4		37.4		0.1	0.1
36	Piano terra	40.7		35.7		40.6		35.6		0.1	0.1
37	Piano terra	48.7		43.7		48.7		43.7		0.0	0.0
37	1° piano	49.6		44.6		49.6		44.6		0.0	0.0
40	Piano terra	43.3		38.3		43.2		38.2		0.1	0.1
44	Piano terra	51.1		46.1		51.1		46.1		0.0	0.0
45	Piano terra	42.5		37.5		42.4		37.4		0.1	0.1
45	1° piano	43.2		38.2		42.8		37.8		0.4	0.4
47	Piano terra	51.4		46.4		51.4		46.4		0.0	0.0
47	1° piano	52.8		47.8		52.8		47.8		0.0	0.0
49	Piano terra	40.4		35.4		40.3		35.3		0.1	0.1
51	Piano terra	47.2		42.2		47.1		42.1		0.1	0.1
52	Piano terra	41.7	2	36.7		41.7		36.7		0.0	0.0

Definition


$$p = \sum_{i=1}^{n} R_i (L_i - L_i *)$$

Ri: Exposed inhabitants Li: measured/calculated level Li*: regulatory limit

An Example Mapping

Conclusions

- Lidar survey for noise modelling: fast response, accurate data
- Delivery times, from scratch: first 100 mi in 1-2 months (depending on atmospheric conditions)
- Useful decision support for identifying –numerically- where to invest to maximize effects
- Regulatory complaint
- • •
- Effectively maximizes benefits for the population

Open issues....

Ho do we protect the drivers.....

..... from **shouting??**?

An experience in high productivity lidar mapping TRB Summer Meeting

www.tommasitommasi.com