| | | DESIGN SPEED (MPH) | | | | | | | |---|----------|--------------------|------|------|------------|------|------|------| | | | 30 | 35 | 40 | <i>4</i> 5 | 50 | 55 | 60 | | | | TAPER LENGTH (FT) | | | | | | | | T ₁
(See Note 2) | Computed | 90′ | 123' | 160° | 270′ | 300′ | 330′ | 360′ | | | Rounded | 100′ | 125′ | 175′ | 275′ | 300′ | 350 | 375′ | | T ₂ (See Note 3) | | 100′ | 200′ | 200′ | 200° | 200′ | 200′ | 200′ | | Full Deceleration
(T ₁ + T ₂) | | 200′ | 325′ | 375′ | 475′ | 500° | 550° | 575′ | ## Notes: - I. Turn Lane Width (W_1) is to be same as Through Lane Width (W_2) (12' assumed in computations). - 2. (For \leq 40 MPH) T_1 = Turn Lane Width X Design Speed 2 ÷ 60 ÷ 2 (Rounded up). (For \geq 40 MPH) T_1 = Turn Lane Width X Design Speed ÷ 2 (Rounded up). - 3. T_2 = is computed as follows: ≤ 30 mph; 8:1 = 96' (Rounded to 100') >35 mph; 15:1 = 180' (Rounded to 200') - 4. L₁ = Length of storage lane to be determined by Figures 3-5 through 3-22 by capacity analysis for Left-Turn Storage, Minimum Length IOO'. Example for 45 MPH (I2' Lane): I) I2' x45 mph = 270' (Rounded to 275') T_1 2) For I5:I Taper: I2' Lane x I5 = I80' (Rounded to 200') T_2 3) $275' \cdot 200' = 475'$ (Full Deceleration Distance) PASSING/LEFT TURN LANE ON TWO-LANE HIGHWAY ## FIGURE 3-4 PASSING/LEFT TURN LANE ON TWO-LANE HIGHWAY* Source: <u>2011 Virginia Work Area Protection Manual</u>, Chapter 6C, Page 6C-7 AASHTO Green Book, Chapter 9, Section 9.7.2, page 9-127 (For turning lane tapers) ^{*} Rev. 7/14