

TAPER LENGTH (FT)		DESIGN SPEED, S (mph)						
		30	35	40	45	50	55	60
Τ,	Computed	180′	245′	320′	540′	600′	660′	720′
(See Note I)	Rounded	200′	250′	325′	550′	600′	675′	725′
T ₂ (See Note 2)		100′	200′	200′	200′	200′	200′	200′
Full Deceleration $(T_1 + T_2)$		300°	450′	525′	750′	800′	875′	925′

Notes:

- I. $T_1 = Thru\ Turn\ lane\ width\ x\ design\ speed\ ^2/60\ (For\ ^< 40\ mph)\ (T_1 = W_2\ x\ S^2/60)$ Thru Turn lane\ width\ x\ design\ speed \quad (For\ > 40\ mph)\ (T_2 = W_2\ x\ S)
- 2. T_2 = is computed as follows: \leq 30 mph; 8: l = 96′ (Rounded to 100′) >35 mph; 15:l = 180′ (Rounded to 200′)
- 3. L_1 = Length of storage lane to be determined by Figures 3-5 through 3-22 by capacity analysis for Left-Turn Storage, Minimum Length 100′.
- 4. Turn Lane Width (W_1) is to be same as Through Lane Width (W_2) (12' assumed in computations).
- 5. Right of Way may be acquired from either side of the B or all from one side as needed.

PASSING/LEFT TURN LANE ON TWO-LANE HIGHWAY

Source: 2003 MUTCD Chapter 6, Page 6C-8, Table 6C-4 (Formulas for Determining Channelizing Taper Lengths). Found at the following:

http://www.virginiadot.org/business/bu-mutcd-disclaim.asp
AASHTO Green Book, Chapter 9 (For turning lane tapers).

FIGURE 3-4*

* Rev. 1/11