Appendix 8A-1 Definitions and Abbreviations

Definitions:

Culvert A structure which is usually designed hydraulically to take advantage of submergence to increase hydraulic capacity.

A structure used to convey surface runoff through embankments.

A structure, as distinguished from bridges, which is usually covered with embankment and is composed of structural material around the entire perimeter, although some are supported on spread footings with the streambed serving as the bottom of the culvert.

A structure which is 20 ft or less in centerline length between extreme ends of openings for multiple boxes. However, a structure designed hydraulically as a culvert is treated as a culvert in this chapter, regardless of length.

- Critical Depth Critical depth is the depth at which the specific energy of a given flow rate is at a minimum. For a given discharge and cross-section geometry there is only one critical depth. Appendix 8C contains critical depth charts for different shapes.
- Flow Type The USGS has established seven culvert flow types which assist in determining the flow conditions at a particular culvert site. Diagrams of these flow types are provided in the design methods section.
- Free Outlet A free outlet has a tailwater equal to or lower than critical depth. For culverts having free outlets, lowering of the tailwater has no effect on the discharge or the backwater profile upstream of the tailwater.
- Improved Inlet An improved inlet has an entrance geometry, which contracts the flow as it enters the barrel thus increasing the capacity of culvert. These inlets are referred to as either side- or slope-tapered (walls or walls and bottom tapered).
- Normal Flow Normal flow occurs in a channel reach when the discharge, velocity and depth of flow do not change throughout the reach. The water surface and channel bottom will be parallel. This

Appendix8A-1Definitions and Abbreviations

type of flow will exist in a culvert operating on a constant slope provided the culvert is sufficiently long.

- Slope A steep slope occurs where critical depth is greater than normal depth. A mild slope occurs where critical depth is less than normal depth.
- Submerged A submerged outlet occurs when the tailwater elevation is higher than the crown of the culvert. A submerged inlet occurs when the headwater is greater than 1.2D where D is the culvert diameter or barrel height.

Abbreviations:

AASHTO	American Association of State Highway and Transportation			
DIM	Officials Bureau of Lond Monogement			
DCR	Department of Conservation and Recreation			
FEMA	Federal Emergency Management Agency			
FHWA	Federal Highway Administration			
NRCS	National Resource Conservation Service; formerly Soil			
	Conservation Service (SCS)			
HDS	Hydraulic Design Series			
HEC	Hydraulic Engineering Circular			
HIRE	Highways in the River Environment			
HW	Headwater			
NFIA	National Flood Insurance Act			
NFIP	National Flood Insurance Program			
NOAA	National Oceanic and Atmospheric Administration			
RDM	Road Design Manual			
TVA	Tennessee Valley Authority			
TW	Tailwater			
USBR	United States Bureau of Reclamation			
USCOE/USACE	United States Army Corps of Engineers			
USGS	United States Geological Survey			
VDOT	Virginia Department of Transportation			

Δn	nen	dix	84-2
×μ	heii	uix	0A-7

Symbols

<u>Symbol</u>	<u>Definition</u>	<u>Units</u>
A	Area of cross section of flow	ft ²
В	Barrel or box width	in or ft
C _d	Overtopping coefficient (Weir coefficient)	-
Cr	Discharge coefficient	-
D	Culvert diameter or barrel height	in or ft
d	Depth of flow	ft
d ₅₀	Mean stone size diameter	in or ft
d _B	Critical depth at riprap basin overflow	ft
d _c	Critical depth	ft
d _E	Equivalent brink depth	ft
$d_n \text{ or } d_o$	Normal depth	ft
Fr	Froude Number	-
g	Acceleration due to gravity	ft/s ²
Н	Total headloss	ft
Hb	Bend headloss	ft
H _E	Entrance headloss	ft
H _f	Friction losses	ft
H _g	Grate losses	ft
Hj	Junction losses	ft
HL	Total energy losses	ft
Ho	Outlet or exit headloss	ft
hs	Depth of riprap basin	ft
H_v	Velocity head	ft
h _o	Hydraulic grade line height above outlet invert	ft
HW	Headwater depth (subscript indicates section)	ft
HWi	Headwater depth as a function of inlet control	ft
HW。	Headwater depth above outlet invert	ft
HW _{oi}	Headwater depth as a function of outlet control	ft
HWr	Headwater depth above roadway	ft
K _e	Entrance loss coefficient	-
k t	Submergence coefficient	-
L	Length of culvert or length of roadway crest	ft
L _B	Length of riprap basin	ft
Ls	Length of dissipating pool	ft
n	Manning's roughness coefficient	-
Pw	Wetted perimeter	ft
Q	Discharge	cts
Q_{d}	Discharge through the culvert	cts

Appendix	8A-2 Symbols	
<u>Symbol</u>	Definition	<u>Units</u>
$\begin{array}{l} Q_t \\ R \\ S_o \\ TW \\ V \\ V_B \\ V_d \\ V_L \\ V_o \\ V_u \\ W_B \\ W_o \\ \gamma \end{array}$	Design or check discharge at culvert Hydraulic radius (A/P) Slope of culvert Tailwater depth above invert of culvert Average velocity of flow Average velocity at riprap basin overflow Average velocity in downstream channel Average velocity at length (L) downstream from brink Average velocity of flow at culvert outlet Average velocity in upstream channel Width of riprap basin at overflow Width dimension of culvert shape Unit weight of water	cfs ft ft/ft fps fps fps fps fps ft ft ft

Appendix 8C-1 Inlet Control, Circular Concrete

HDS -5

Source:

Appendix 8C-4

Source:

Outlet Control, Circular Corrugated Metal

Source:

Appendix 8C-7 Outlet Control, Circular Structural Plate Corrugated Metal

Inlet Control, Concrete Box, **Appendix 8C-9** Flared Wingwalls at 18° to 33.7° and 45°,

Appendix 8C-10

Inlet Control, Concrete Box, 90° Headwall, Chamfered or Beveled Edges

Source:

HDS-5

1 of 1

Appendix 8C-11 Inlet Control, Single Barrel Concrete Box, Skewed Headwalls Chamfered or Beveled Edges

Appendix 8C-12 Inlet Control, Concrete Box, Flared Wingwalls, Normal and Skewed Inlets, Chamfered Top Edge

Source: H

Source:

Source: HDS-5

Outlet Control,

1 of 1

Appendix 8C-23 **Outlet Control, Corrugated Metal Box,**

Appendix 8C-25 Outlet Control, Corrugated Metal Box, Corrugated Metal Bottom, Rise/Span <0.3

Appendix 8C-24 **Outlet Control**, **Corrugated Metal Box, Concrete Bottom**

Source:

Appendix 8C-26 Outlet Control, Corrugated Metal Box, Corrugated Metal Box, 0.3≤ Rise/Span <0.4

Duplication of this nomograph may distort scale

Appendix 8C-27 **Outlet Control, Corrugated Metal Box,**

Appendix 8C-28 **Outlet Control, Corrugated Metal Box,**

Appendix 8C-29 Inlet Control, Oval Concrete, Long Axis Horizontal

Inlet Control, Oval Concrete,

Appendix 8C-31 Critical Depth, Oval Concrete, Long Axis Horizontal

Duplication of this nomograph niay distort scale

Appendix 8C-34

Inlet Control, Corrugated Metal Pipe-Arch

Source:

Critical Depth, Oval Concrete, Long Axis Vertical

Appendix 8C-36

Inlet Control, Structural Plate Pipe-Arch, 31" Corner Radius

CHART 36

Critical Depth, Structural Plate

Source:

BUREAU OF PUBLIC ROADS JAN. 1963

Appendix 8C-41 Inlet Control, Corrugated Metal Arch, 0.3≤ Rise/Span <0.4

Source: HE

CHART 42

Entrance Conditions (2) (2) 90° headwall. (4) Mitered to embankment. (5)Thin wall projecting corrugated metal. 360 340 320 10.000 9000 **‡**з.о 300 8000 280 7000 260 6000 240 Exam 5000 220 4000 200 3000 180 160 (0) 2000 140 1500 WH) 120 1000 900 800 100 700 90

(4)

.0

5.0

4.0

3.0

(5)

5.0

4.0

3.0

Source:

HDS-5

Chart 8C-60 Discharge Coefficients for Roadway Overtopping

DISCHARGE COEFFICIENTS FOR ROADWAY OVERTOPPING

Appendix 8C-46 **Outlet Control, Corrugated Metal Arch,**

Appendix 8C-49 Outlet Control, Corrugated Metal Arch, Earth Bottom, 0.4≤ Rise/Span <0.5

Source:

Appendix 8C-54	Critical Depth, Structural Plate Arch,
	Low and High Profile

1 of 1

Chart 8C-55 Throat Control, Circular Section, Side-Tapered

9 - D - 58

Chart 8C-56 Face Control, Non-Rectangular Section, Side-Tapered to Circular

9 - D - 59

Chart 8C-57 Throat Control, Box Section, Tapered Inlet

Appendix 8C-59 Face Control, Box Section, Slope-Tapered

Chart 8C-60 Discharge Coefficients for Roadway Overtopping

DISCHARGE COEFFICIENTS FOR ROADWAY OVERTOPPING

Appendix 8C-61 Circular Pipe Flow Chart (Diameter = 12")

Appendix 8C-63 Circular Pipe Flow Chart (Diameter = 18")

Appendix 8C-62 Circular Pipe Flow Chart (Diameter = 15")

Appendix 8C-64 Circular Pipe Flow Chart (Diameter = 21")

Appendix 8C-65 Circular Pipe Flow Chart (Diameter = 24")

Appendix 8C-66 Circular Pipe Flow Chart (Diameter = 27")

Appendix 8C-67 Circular Pipe Flow Chart (Diameter = 30")

Appendix 8C-68 Circular Pipe Flow Chart (Diameter = 33")

Appendix 8C-69 Circular Pipe Flow Chart (Diameter = 36")

Appendix 8C-70 Circular Pipe Flow Chart (Diameter = 42")

Appendix 8C-71 Circular Pipe Flow Chart (Diameter 48")

Appendix 8C-72 Circular Pipe Flow Chart (Diameter = 54")

Appendix 8C-73 Circular Pipe Flow Chart (Diameter = 60")

PIPE FLOW CHART 60-INCH DIAMETER

Source: HDS-3

Appendix 8C-74 Circular Pipe Flow Chart (Diameter = 66")

VDOT Drainage Manual

Appendix 8C-75 Circular Pipe Flow Chart (Diameter = 72")

Appendix 8C-76 Circular Pipe Flow Chart (Diameter = 84")

Appendix 8C-77 Circular Pipe Flow Chart (Diameter = 96")

Appendix 8C-78 Rectangular Channel Flow Chart (B=2')

Appendix 8C-79 Rectangular Channel Flow Chart (B=3')

Appendix 8C-81 Rectangular Channel Flow Chart (B=5')

Appendix 8C-82 Rectangular Channel Flow Chart (B=6')

Appendix 8C-83 Rectangular Channel Flow Chart (B=7')

Appendix 8C-84 Rectangular Channel Flow Chart (B=8')

Appendix 8C-85 Rectangular Channel Flow Chart (B=9')

Appendix 8C-86 Rectangular Channel Flow Chart (B=10')

Appendix 8C-87 Rectangular Channel Flow Chart (B=12')

Appendix 8C-88 Rectangular Channel Flow Chart (B=14')

Source:

HDS-3

Appendix 8C-89 Rectangular Channel Flow Chart (B=16')

Appendix 8C-90 Rectangular Channel Flow Chart (B=18')

Appendix 8C-91 Rectangular Channel Flow Chart (B=20')

Appendix 8D-1	Recommended Manning's n-Values				
Type of Conduit	Wall Description	Manning's n			
Concrete Pipe	Smooth walls	0.010-0.013			
Concrete Boxes	Smooth walls	0.012-0.015			
Corrugated Metal	2 2/3 by 1/2 inch corrugations	0.022-0.027			
Pipes and Boxes Annular or Helical	6 by 1 inch corrugations	0.022-0.025			
Barrel size)	5 by 1 inch corrugations	0.025-0.026			
See HDS5	3 by 1 inch corrugations	0.027-0.028			
	6 by 2 inch structural plate	0.033-0.035			
	9 by 2 1/2 inch structural plate	0.033-0.037			
Corrugated Metal Pipes, Helical Corrugations, Full Circular Flow	2 2/3 by 1/2 inch corrugations	0.012-0.024			
Spiral Rib Metal	Smooth walls	0.011-0.012			
*Note 1:	The Values indicated in this table are recommended Manning's "n" design values. Actual Field values for older existing pipelines may vary depending on the effects of abrasion, corrosion, deflection and joint conditions. Concrete pipe with poor joints and deteriorated walls may have "n" values of 0.014 to 0.018. Corrugated metal pipe with joint and wall problems may also have higher "n" values, and in addition, may experience shape changes which could adversely effect the general hydraulic characteristics of the culvert.				
Note 2:	For further information concerning Manning n values for selected conduits consult Hydraulic Design of Highway Culverts, Federal Highway Administration, HDS No. 5, Table 4.				
Source: HDS-5					

Entrance Loss Coefficients (K_e), Outlet Control, Full or Partly Full

Type of Structure and Design of Entrance	Coefficient
Pipe, Concrete	
Mitered to conform to fill slope	0.7
*End-Section conforming to fill slope	0.5
Projecting from fill, sq. cut end	0.5
Headwall or headwall and wingwalls	0.5
	0.5
Rounded (radius = D/12)	0.2
Projecting from fill socket end (groove-end)	0.2
Beveled edges 33.7° or 45° bevels	0.2
Side-or slope-tapered inlet	0.2
Pipe, or Pipe-Arch, Corrugated Metal	
Projecting from fill (no headwall)	0.9
Mitered to conform to fill slope, paved or unpaved slope	0.7
Headwall or neadwall and wingwalls square-edge	0.5
Beveled edges 33.7° or 45° bevels	0.3
Side-or slope-tapered inlet	0.2
	0.2
Box, Reinforced Concrete	
Headwall parallel to embankment (no wingwalls)	0.5
Square-edged on 3 edges	0.5
or beveled edges on 3 sides	0.2
Wingwalls parallel (extension of sides)	0.2
Square-edged at crown	0.7
Wingwalls at 10° to 25° to barrel	
Square-edged at crown	0.5
Wingwalls at 30° to 75° to barrel	
Crown edge rounded to radius of D/12 or beveled top edge	0.2
Square Edge at crown	0.4
Side-or slope-tapered inlet	0.2

*Note :

"End Sections conforming to fill slope," made of either metal or concrete, are the sections commonly available form manufacturers. From limited hydraulic tests they are equivalent in operation to a headwall in both <u>inlet</u> and <u>oulet</u> control. Some end sections, incorporating a <u>closed</u> taper in their design have a superior hydraulic performance. These latter sections can be designed using the information given for the beveled inlet.

Energy Dissipation

8E.1 Riprap Basin

Riprap basins are used for energy dissipation at the outlets of high velocity culverts.

Riprap basin design is based on laboratory data obtained from full-scale prototypical installations. The principal features of riprap basins are as follows:

- 1. Pre-shaping and lining with riprap of median size, d_{50} .
- 2. Constructing the floor at a depth of h_s below the invert, where h_s is the depth of scour that would occur in a pad of riprap of size d_{50} .
- 3. Sizing d_{50} so that $2 < h_s/d_{50} < 4$.
- 4. Sizing the length of the dissipating pool to be $10(h_s)$ or $3(W_o)$, whichever is larger for a single barrel. The overall length of the basin is $15(h_s)$ or $4W_o$ whichever is larger.
- 5. Angular rock results are approximately the same as the results of rounded material.
- 6. Layout details and dimensions are shown on Figure 8E-1.

For high tailwater ($\frac{TW}{d_o}$ > 0.75), the following applies:

- 1. The high velocity core of water emerging from the culvert retains its jet-like character as it passes through the basin.
- 2. The scour hole is not as deep as with low tailwater and is generally longer.
- 3. Riprap may be required for the channel downstream of the rock-lined basin.

8E.2 Design Procedures and Sample Problems

The procedure shown below should be used to determine the dimension for a riprap basin energy dissipator for culvert and pipe installations with pipe velocities greater than or equal to 19 feet per second as classified in Section 8.3.2.6. Maximum Outlet Velocity within the Chapter 8 text.

Step 1: Determine input flow parameters: D_e or d_{E_r} , V_o , F_r at the culvert outlet

Where:

d_E = Equivalent depth at the brink = $\sqrt{\frac{A}{2}}$ Note: d_E = y_e in Figure 8E-2

Step 2: Check TW

Determine if $\frac{TW}{d_o} \le 0.75$ Note: $d_o = d_E$ in Figure 8E-2 for rectangular sections

Step 3 Determine d₅₀

- a. Use Figure 8E-2.
- b. Select d_{50}/d_E . Satisfactory results will be obtained if $0.25 < d_{50}/d_E < 0.45$.
- c. Obtain h_s/d_E using Froude number (F_r) and Figure 8E-2.
- d. Check if $2 < h_s/d_{50} < 4$ and repeat until a d_{50} is found within the range.

Step 4: Size basin

- a. As shown in Figure 8E-1.
- b. Determine length of the dissipating pool, $L_s = 10h_s$ or $3W_o$ minimum.
- c. Determine length of basin, $L_B = 15h_s$ or $4W_o$ minimum.

Thickness of riprap: Approach = $3d_{50}$ or $1.5d_{max}$ Remainder = $2W_0$ or $1.5d_{max}$

Energy Dissipation

- Step 5: Determine exit velocity at brink (V_B)
 - a. Basin exit depth, d_B = critical depth at basin exit
 - b. Basin exit velocity, $V_B = \frac{Q}{W_B d_B}$
 - c. Compare V_{B} with the average normal flow velocity in the natural channel $\left(V_{\text{d}}\right)$
- Step 6: High tailwater design
 - a. Design a basin for low tailwater conditions, Steps 1-5.
 - b. Compute equivalent circular diameter (D_E) for brink area from:

$$A = \frac{\pi D_{E}^{2}}{4} = d_{o}(W_{o})$$

c. Estimate centerline velocity at a series of downstream cross sections using Figure 8E-4.

Size riprap using HEC -11 "Use of Riprap for Bank Protection."¹

Step 7: Design Filter

The design filter is necessary unless the streambed material is sufficiently well graded. To deign a filter for riprap, use the procedures in Section 4.4 of HEC-11.

Dissipator geometry can also be computed using the "Energy Dissipator" module that is available in the microcomputer program HY8, Culvert Analysis.

- TO OBTAIN SUFFICIENT CROSS-SECTIONAL AREA AT SECTION A-A SUCH THAT Q_{des}/(CROSS SECTION AREA AT SEC. A-A) = SPECIFIED EXIT VELOCITY.
- NOTE B WARP BASIN TO CONFORM TO NATURAL STREAM CHANNEL, TOP OF RIPRAP IN FLOOR OF BASIN SHOULD BE AT THE SAME ELEVATION OR LOWER THAN NATURAL CHANNEL BOTTOM AT SEC. A-A.

Figure 8E-1. Details of Riprap Basin Energy Dissipator

Energy Dissipation

Figure 8E-2. Riprap Basin Depth of Scour

IF TW/d_g > 0.75, calculate riprap downstream using Figure 8E-4 $D_{\epsilon} = (4A_{c}/\pi)^{0.5}$

DOWNSTREAM RIPRAP (Figure 8E-4)					
L/D _E	L	V _L /V _e	V.	D ₅₀	
10					
15					
20					
21					

Figure 8E- 3. Riprap Basin Design Checklist

_

Energy Dissipation

8E.2.1 Riprap Design for Low Tailwater Condition-Sample Problem

- Given: Box culvert: 8.0 ft by 6.0 ft. Design discharge Q = 800 cfs Supercritical flow in culvert Normal flow depth d_o = brink depth d_E = 4.0 ft Tailwater depth, TW = 2.8 ft Downstream channel velocity = 18 fps
- Step 1: Determine input flow parameters: D_e or d_{E_r} , V_o , F_r at the culvert outlet

$$\begin{array}{l} d_{o} = d_{E} \text{ for rectangular section} \\ d_{o} = d_{E} = 4.0 \text{ ft.} \\ V_{o} = \frac{Q}{A} = \frac{800}{4.0(8.0)} = 25 \text{ fps} \\ F_{r} = \frac{V_{o}}{\sqrt{gd_{E}}} = \frac{25}{\sqrt{32.2(4.0)}} = 2.2 < 3.0 \end{array}$$

Step 2: Check TW:

Determine if
$$\frac{TW}{d_E} < 0.75$$

 $\frac{2.8}{4.0} = 0.70 < 0.75$
Therefore, $\frac{TW}{d_E} < 0.75$, O.K.

Step 3: Determine d_{50} :

a. Use Figure 8E-2

b. Try
$$d_{50}/d_E = 0.45$$

 $d_{50} = \left(\frac{d_{50}}{d_E}\right)d_E = 0.45(4.0) = 1.8 \text{ ft.}$

c. Obtain h_S/d_E using F_r = 2.2 and line $0.41 \le d_{_{50}}/d_E \le 0.50$

$$h_{\rm S}/d_{\rm E} = 1.6$$

Energy Dissipation

d. Check if $2 < h_S/d_{50} < 4$:

$$h_{s} = \left(\frac{h_{s}}{d_{E}}\right) d_{E} = 1.6(4.0) = 6.4 \text{ ft.}$$
$$\frac{h_{s}}{d_{50}} = \frac{6.4}{1.8} = 3.55 \text{ ft.}$$
$$2 < 3.55 < 4, \text{ O.K.}$$

Step 4: Size the basin:

- a. As shown in Figure 8E-1
- b. Determine length of dissipating pool, L_S : $L_S = 10h_S = 10(6.4) = 64$ ft. L_S min.= $3W_o = 3(8) = 24$ ft Therefore, use $L_S = 64$ ft
- c. Determine length of basin, L_B : $L_B = 15h_S = 15(6.4) = 96$ ft

 $L_B min. = 4W_o = 4(8) = 32 ft$

Therefore, use $L_B = 96$ ft

d. Thickness of riprap: Approach = $3d_{50} = 3(1.80) = 5.4$ ft Remainder = $2d_{50} = 2(1.80) = 3.6$ ft

Step 5: Determine V_B:

- a. d_B = Critical depth at basin exit = 3.30 ft. (assuming a rectangular cross section with width W_B = 24 ft.)
- b. $V_{\rm B} = \frac{Q}{W_{\rm B}d_{\rm B}} = \frac{800}{24(3.3)} = 10 \text{ fps}$
- c. $V_B = 10 \text{ fps} < V_d = 18 \text{ fps}$

Energy Dissipation

8E.2.2 Riprap Design for High Tailwater Condition-Sample Problem

Given: Data on the channel and the culvert are the same as Sample Problem 1, except that the new tailwater depth,

TW = 4.2 ft.

$$\frac{TW}{d_o} = \frac{4.2}{4.0} = 1.05 > 0.75$$

Downstream channel can tolerate only 7.0 fps

Steps 1 through 5 are the same as Sample Problem 8E.2.1.

Step 6: High tailwater design:

a. Design a basin for low tailwater conditions, Steps 1-5 as above: $D_{50} = 1.8$ ft, $h_S = 6.4$ ft

$$L_{\rm S} = 64$$
 ft, $L_{\rm B} = 96$ ft

b. Compute equivalent circular diameter, D_E, for brink area from:

A =
$$\frac{\pi D_{E}^{2}}{4} = d_{o}(W_{o}) = 4.0(8.0) = 32 \text{ ft}^{2}$$

D_E = $\sqrt{\frac{4A}{\pi}} = \sqrt{\frac{4(32)}{\pi}} = 6.4 \text{ ft.}$

 $V_o = 25$ fps (Sample Problem 8E.2.1).

c. Estimate centerline velocity at a series of downstream cross sections using Figure 8E-5.

$\frac{L}{D_{E}}^{1}$	L	$\frac{V_L}{V_O}$	VL	${\sf D}_{50}{}^2$
10	64	0.59	14.7	1.4
15 ³	96	0.36	9.0	0.6
20	128	0.30	7.5	0.4
21	135	0.28	7.0	0.4

¹ Use $W_o = D_E$ in Figure 8E- 5.

² From Figure 8E- 6.

- ³ Is on a logarithmic scale so interpolations must be performed logarithmically.
- d. Size riprap using HEC 11. The channel can be lined with the same size rock used for the basin. Protection should extend at least 135 ft downstream.

This information is summarized in the worksheet for riprap basin design, Figure 8E- 4.
Appendix 8E-1

TAILWATER CHECK					
Taitwater, TW	4.2				
Equivalent depth, d _e	4.0				
TW/d ₆	1.05				
IF TW/d _g > 0.75, calculate riprap downstream using Figure 8E-4					
$D_{\varepsilon} = (4A_{c}/\pi)^{0.5}$	-				

DOWNSTREAM RIPRAP (Figure 8E-4)								
L/D _E	L	$V_{\rm t}/V_{\bullet}$	V.	D ₃₀				
10	64-	0,59	14,7	1.4				
15	96	0.37	9,0	0.6				
20	128	0,30	7,5	0,4				
21	135	0,28	7.0	0.4				

Figure 8E- 4. Riprap Basin Design Worksheet, Sample Problem

Energy Dissipation

Figure 8E- 5. Distribution of Centerline Velocity for Flow from Submerged Outlets

Appendix 8E-1

Appendix 8E-1

Figure 8E- 6. Riprap Size Versus Exit Velocity

Appendix 8E-1

Energy Dissipation

8E.2.3 Computer Output

The dissipator geometry can be computed using the "Energy Dissipator" module, which is available in FHWA's HY8, Culvert Analysis microcomputer program. The output of the culvert data, channel input data, and computed geometry using this module are shown below.

FHWA CULVERT ANALYSIS, HY-8, VERSION 6.0						
CURRENT DATE 06-02-1997	CURRENT TIME 15:23:59	FILE NAME ENERGY3	FILE DATE 06-02-1997			
	CULVERT AND CH	IANNEL DATA				
CULVERT NO. 1 CULVERT TYPE: 8.0 ft X CULVERT LENGTH = 30 NO. OF BARRELS = 1.0 FLOW PER BARREL= 40 INVERT ELEVATION = 1 OUTLET VELOCITY = 25 OUTLET DEPTH = 4.0 ft	(6.0 ft, BOX 0 ft 00 cfs 72.5 ft 5 fps	DOWNSTREAM CHANNEL TYP BOTTOM WIDT TAILWATER DI TOTAL DESIGN BOTTOM ELEV NORMAL VELC	A CHANNEL PE: IRREGULAR TH = 8.0 ft EPTH = 2.8 ft N FLOW = 400 cfs /ATION = 172.5 ft DCITY = 32 fps			

RIPRAP STILLING BASIN – FINAL DESIGN

THE LENGTH OF THE BASIN	– 96 3 ft
	= 64.2 ft
	= 04.2 II
	$= 32 \pi$
THE WIDTH OF THE BASIN AT THE OUTLET	= 8.0 ft
THE DEPTH OF POOL BELOW CULVERT INVERT	= 6.4 ft
THE THICKNESS OF THE RIPRAP ON THE APRON	= 6.6 ft
THE THICKNESS OF THE RIPRAP ON THE REST OF THE BASIN	= 5.0 ft
THE BASIN OUTLET VELOCITY	= 17 fps
THE DEPTH OF FLOW AT BASIN OUTLET	= 6.0 ft

Handling Weight for Corrugated Steel Pipe Appendix 8F-1 (2²/₃"x¹/₂" Corrugations)

Estimated Average Weights – Not for Specification Use*									
		A	pproximate Poun	ds per Lineal Foot **					
Inside Diameter In Inches	Specified Thickness In Inches	Galvanized	Full- Coated	Full-Coated and Invert Paved	Full-Coated and Full Paved				
12	.052 .064 .079	8 10 12	10 12 14	13 15 17					
15	.052 .064 .079	10 12 15	12 15 18	15 18 21					
18	.052 .064 .079	12 15 18	14 19 22	17 22 25					
21	.052 .064 .079	14 17 21	16 21 25	19 26 30					
24	.052 .064 .079	15 19 24	17 24 29	20 30 35	45 60				
30	.052 .064 .079	20 24 30	22 30 36	25 36 42	55 60				
36	.052 .064 .079	24 29 36	26 36 43	29 44 51	65 75				
42	.052 .064 .079	28 34 42	30 42 50	33 51 59	85				
48	.052 .064 .079	31 38 48	33 48 58	36 57 67	95				
54	.064 .079	44 54	55 65	66 76	95 105				
60	.079 .109	60 81	71 92	85 106	140				
66	.109 .138	89 113	101 125	117 141	160 180				
72	.109 .138	98 123	112 137	129 154	170 210				
78	.109 .138	105 133	121 149	138 166	200 230				
84	.109 .138	113 144	133 161	155 179	225 240				
90	.109 .138 .168	121 154 186	145 172 204	167 192 224					
96	.138 .168	164 198	191 217	217 239					

Table 1-3 Handling Weight of Corrugated Steel Pine (2²/₂ x ¹/₂ in)

* Lock seam construction only; weights will vary with other fabrication practices. ** For other coatings or linings the weights may be interpolated.

Note: Pipe arch weights will be the same as the equivalent round pipe. For example; for 42 x 29, 2²/₃ x ½ in Pipe Arch, refer to 36 in diameter pipe weight. Smooth steel lined CSP weighs approximately 5% more than single wall galvanized.

_

Appendix 8F-2 Handling Weight for Corrugated Steel Pipe (3"x1" or 125 mm x 25 mm Corrugations)

Estimated Average Weights—Not for Specification Use*									
		Approximate Pounds per Lineal Foot **							
Diameter	Thickness	Galvanized	Full-	Full-Coated	Full-Coated				
In Inches	In Inches		Coated	and Invert Paved	and Full Paved				
54	.064	50	66	84	138				
	.079	61	77	95	149				
60	.064	55	73	93	153				
	.079	67	86	105	165				
66	.064	60	80	102	168				
	.079	74	94	116	181				
72	.064	66	88	111	183				
	.079	81	102	126	197				
78	.064	71	95	121	198				
	.079	87	111	137	214				
84	.064	77	102	130	213				
	.079	94	119	147	230				
90	.064	82	109	140	228				
	.079	100	127	158	245				
96	.064	87	116	149	242				
	.079	107	136	169	262				
102	.064	93	124	158	258				
	.079	114	145	179	279				
108	.064	98	131	166	273				
	.079	120	153	188	295				
114	.064	104	139	176	289				
	.079	127	162	199	312				
120	.064	109	146	183	296				
	.079	134	171	210	329				
	.109	183	220	259	378				
126	.079	141	179	220	346				
	.109	195	233	274	400				
132	.079	148	188	231	353				
	.109	204	244	287	419				
138	.079	154	196	241	379				
	.109	213	255	300	438				
144	.109	223 282	267 326	314 373	458 517				

Table 1-4 Handling Weight of Corrugated Steel Pipe (3 x 1 In or 125 x 25 mm) Estimated Average Weights—Not for Specification Use*

* Lock seam construction only; weights will vary with other fabrication practices.

** For other coatings or linings the weights may be interpolated.

"125 x 25mm may be referred to as 5 x 1in.

and weighs approximately 12% less than 3 x 1in.

Note: Pipe arch weights will be the same as the equivalent round pipe.

For example; for 42 x 29, 235 x 1/2 in Pipe Arch, refer to 36 in. diameter pipe weight. Smooth steel lined CSP weighs approximately 5% more than single wall galvanized.

Appendix 8F-3

Dimension and Weight of Minimum Size Counterweight

DIMENSIONS AND WEIGHT OF MINIMUM SIZE COUNTERWEIGHT

A = 6" B - D / 2 + 12" C = D + 12" D = PIPE DIAMETER

* WEIGHT OF CONCRETE @ 150 LBS. PER CU. FT.

Pipe Diameter (inches)	Dimensions (inches)			Con	crete
D	А	В	С	Volume (cu. ft.)	Weight* (lbs.)
12	6	18	24	1.30	195
15	6	19.5	27	1.52	228
18	6	21	30	1.75	263
24	6	24	36	2.22	333
30	6	27	42	2.71	407
36	6	30	48	3.23	485
42	6	33	54	3.78	567
48	6	36	60	4.36	654
54	6	39	66	4.96	744
60	6	42	72	5.59	839
66	6	45	78	6.25	938
72	6	48	84	6.93	1040

Appendix 8F-4Diameter Dimensions and D2.5Values forStructural Plate Corrugated Circular Pipe
(9" x 2 ½" Aluminum Corrugations)

Diam	neter		Plates	
(fe	et)	D ^{2.5}	per	
Nominal	Actual		Ring	
6.5	6.42	104.4	2	
7.0	6.93	126.4	2	
7.5	7.44	151.0	3	
8.0	7.96	178.8	3	
8.5	8.46	208.2	3	
9.0	8.97	241.0	3	
9.5	9.48	276.7	3	
10.0	9.99	315.4	3	
10.5	10.50	357.2	3	
11.0	11.01	402.2	4	
11.5	11.52	450.4	4	
12.0	12.04	503.0	4	
12.5	12.54	556.9	4	
13.0	13.05	615.2	4	
13.5	13.57	678.3	4	
14.0	14.08	743.9	4	
14.5	14.59	813.1	5	
15.0	15.10	886.0	5	

Appendix 8F-4Diameter Dimensions and D2.5Values forStructural Plate Corrugated Circular Pipe
(9" x 2 ½" Aluminum Corrugations)

Diam	neter		Plates	
(fe	et)	D ^{2.5}	per	
Nominal	Actual		Ring	
6.5	6.42	104.4	2	
7.0	6.93	126.4	2	
7.5	7.44	151.0	3	
8.0	7.96	178.8	3	
8.5	8.46	208.2	3	
9.0	8.97	241.0	3	
9.5	9.48	276.7	3	
10.0	9.99	315.4	3	
10.5	10.50	357.2	3	
11.0	11.01	402.2	4	
11.5	11.52	450.4	4	
12.0	12.04	503.0	4	
12.5	12.54	556.9	4	
13.0	13.05	615.2	4	
13.5	13.57	678.3	4	
14.0	14.08	743.9	4	
14.5	14.59	813.1	5	
15.0	15.10	886.0	5	

Appendix 8F-5

Geometric Properties and Critical Flow Factors for Circular Conduits Flowing Full and Partly Full

Table 4 G d = Depth o d = Critical 1 Mosa d D = Diamete f = Area of R = Hydraul T = Top vid	connetric p f flow depth spin r of pipe flow ic sudius th of flow	stric properties and articled flow factors for circular conduits flawing fall and partly full $Q_r = Discharge at a critical flow condition R_r = Speak back at enclosed flow R_r = Critical volveitya = Kindig encry corrections factor intege = Acceleration due to gravity = 32.16 fL/acc./sec.$								
가 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다	å	л Б	7 D	đ. D	a = 1.00	<u>Q.</u> σ= 1.94	a=1.12	a#? 2∎0 щ a	<u>н.</u> ₽	
1.99	0.7854	0.2500			-	-	-	-	_	
96 97 96	.7817 .7745 .7749	_2787 _2787 _2829	_2800 _3412 _3919	2.2817 1.9773	5.6695 5.1785	6.5400 6.0585	6.3021 5.3381	1.14J0 C.9883	2.1110	
.96 .94 .93 .92 .91	.7707 .7662 .7612 .7594	.2865 .2895 .2921 .2944 .2963	.43.79 .4750 .5103 .5426 .5724	1.768) 1.613) 1.4917 1.3933 1.3110	5,8119 5,5182 5,9727 5,0602 4,8724	5,6991 5,4311 5,1703 4,9620 4,7778	5 49[7 5.2]42 4 9822 4.78[4 4.6040	8848 8053 7459 .6955 .6555	1.8840 1.7463 1.6759 1.6165 1.5655	
.90	.7445	.2980	.6009	1.2408	1.7013	6.6120	\$.4442	.6206	1.5205	
.89	.7384	.2995	.6258	1.8799	1.5486	4.4603	4.2990	.5899	1.4799	
.88	.7320	.3007	.6499	1.4263	1.4057	6.2202	4.1630	.5633	1.4433	
.87	.7354	.3016	.6726	1.0785	1.2722	4.1893	4.0369	.5393	1.4093	
.86	.7386	.3025	.6726	1.0354	1.1456	6.0661	3.9182	.5177	1.3777	
.85	.1115	.5483	.7142	0,9962	4.0276	3.9494	3.6957	4982	1.3482	
.84	.7043	.3098	.7332	.9506	3.9144	3.8384	3.6958	4802	1.3302	
.83	.6969	.3041	.7513	.9276	3.8062	3.7323	3.5965	4637	1.2937	
.82	.6893	.5443	.7664	.8971	3.7021	3.6302	3.4982	4484	1.2684	
.81	.6815	.3043	.7846	.8586	3.6020	3.5321	3.4036	4843	1.2443	
.80	.6736	.3042	.8000	.8420	3.5051	3.4370	3.3:20	.4209	1.2209	
79	4655	.3039	8146	8170	3.4111	3.3449	3.2232	.4064	1.1984	
.78	6685	.3036	.8285	7934	3.3200	3.2555	3.1371	.3966	1.1766	
.77	6485	.3031	.6417	.7709	3.2314	3.1687	3.0534	.3855	1.1555	
.75	6485	.3024	.8542	.7498	3.1450	3.0839	2.9717	.3749	1.1549	
0.75	0.6319	9.3017	0.8660	0.7297	3,0606	3.0012	2.8920	0.3648	1.1148	
.74	.6231	,3008	_8773	.7102	1,9783	2.9905	2.8142	.3852	1.0952	
.73	.6163	.2998	_8879	.6919	2,8977	2.8414	2.7581	.3459	1.0759	
.72	.6054	,2987	_8960	.6742	1,8186	2.7641	2.6635	.3371	1.0571	
.71	.5964	.2975	_9075	.6572	2,7416	2.6384	2.5906	.3285	1.0355	
.70	.\$812	.2952	.9165	.6407	2,6656	2.6138	2.5188	.3204	1,0204	
.69	.\$780	.2948	.9250	.6249	2,5912	2.5409	2.4405	.3125	1,0025	
.68	.\$687	.2933	.9330	.6095	2,5182	2.4693	2.3795	.3048	0,9948	
.67	.\$694	.2917	.9404	.5949	2,6465	2.3990	2.3117	.2974	.9674	
.66	5499	.2900	.9474	.5949	2,3760	2.3299	2.2451	.2902	.9674	
.65 .64 .63 .62 .61	.5404 .5308 .5212 .5115 .5018	.2882 .2862 .2842 .2821 .2821 .2799	.9539 .9600 .9656 .9738 .9755	.5665 .5529 .5398 .5269 .5144	2.3968 2.2396 2.1717 2.1658 2.0410	2.2620 2.1951 2.1295 2.0649 2.0014	2.1297 2.1153 2.0521 1.9598 1.9286	.2633 .2765 .2699 .2635 .2572	_9333 _9165 _8909 _8335 _8672	
.60	.4920	.2776	,9798	.5021	L9773	1.9389	1.8684	.2513	.8511	
.59	.4822	.2753	.9837	.4902	L9147	1.8775	1.8092	.2451	.8351	
.58	.4724	.2728	.9871	.4786	1.8531	1.8171	1.7510	.2993	.8193	
.57	.4625	.2703	.9902	.4671	L1924	1.7576	1.6937	.2335	.8035	
.55	.4525	.2676	.9928	.4559	1.7328	1.6992	1.6373	.2279	.7879	
25 34 33 33 33 33	.4425 4327 4227 4127 4027	.3649 .2621 .2592 .2552 .2552	.9950 .9968 .9982 .9992 .9998	,4448 ,4341 ,4235 ,4130 ,4028	1.6741 1.6166 1.5568 1.5641 1.4494	1.6416 1.5852 1.5295 1.4749 1.4213	1.5829 1.5275 1.4739 1.4212 1.36%	2121 2170 2117 2065 2014	.7724 .7570 .7417 .7266 .7114	
.50	.3921	.2500	1,0000	.3927	1,3956	1.3685	1.3187	.1964	.6964	
.49	.3821	.2458	.9998	.3828	1,3427	1.3166	1.2687	.1914	.6814	
.48	.3727	.2435	9902	.3730	1 2908	1.2657	1.2197	.1965	.6665	
.47	.3627	.2401	.9982	.3534	1,2400	1.2159	1.1717	.1817	.6517	
.46	.3527	.2306	.9968	.3538	1,1900	1.1669	1.1244	.1770	.6370	
.45	.3428	.2331	.9950	.3445	1.1410	1.1188	1.078)	.1722	.6222	
.41	.3328	.2295	.9928	.3352	1.0929	1.0717	1.0327	.16*7	.6017	
.43	.3229	.2258	.9902	.3261	1.0459	1.0256	0.9683	.1631	.5931	
.42	.3130	.2210	.9871	.5171	0.9997	0.9803	.9446	.1386	.5786	
.41	.3032	.2162	.9637	.5082	.9546	_9361	.9020	.1541	.5641	
.40	.2934	.2142	.9799	.2994	.9104	.8927	.8602	.1497	.5497	
_39	.2836	.2102	.9755	.2907	.8572	.8504	.8194	.1454	.5354	
_38	.2739	.2062	.9708	.2821	.8249	.9089	.7795	.1468	.5210	
_37	.2642	.2020	.9055	.2736	.7536	.7564	.7404	.1368	.5068	
_36	.2546	.1978	.9600	.2652	.7433	.7289	.7024	.1325	.4925	
.35	.2450	.1935	.9539	.2568	.7040	.6903	. 5652	.3284	4784	
.34	.2355	.1891	.9474	.2485	.6657	.6523	.6290	.3242	4642	
.33	.2260	.1847	.9404	.2903	.6284	.6162	.5938	.1202	4502	
.32	.2167	.1862	.9330	.2123	.5921	.5806	.5995	.1151	,4361	
.31	.2079	.1756	.9250	.2242	.5569	.5461	.5252	.1121	,6221	
.30	.1982	.1799	.9165	.2143	.5226	.5125	,4958	.103:	.4081	
.29	.1890	.1662	.9015	.2083	.4893	.4798	,4623	.1042	.3942	
.28	.1800	.1534	.8980	.3064	.4571	4482	,4319	.1003	.3803	
.27	.1711	.1566	.8379	.1927	.4259	.4175	,4024	.0963	.3665	
.26	.1623	.1516	.8773	.1850	.3957	.3680	,3739	.0524	.3524	
.25	.1535	.1466	.8660	.1713	.3667	.3596	.3465	.0687	.3397	
.24	.1449	.1416	8542	.1696	.5386	.5320	.5199	.0849	.3249	
.23	.1365	.1364	.8417	.1622	.3116	.3055	.2944	.0810	.3110	
.22	.1281	.1312	.8285	.1546	.2857	.2502	.2700	.0773	.2973	
.21	.1199	.1259	.8145	.1472	.2609	.2558	.2465	.0736	.2825	
0.20	0.1118	0.1206	D.8000	0.1397	0.2371	0.2325	6.2240	0.0639	0.2699	
.19	.1039	.1152	.7845	.1324	.2144	_1102	.2026	.0652	.1562	
.18	.0961	.1097	.7684	.1251	.1928	_1891	.1822	.0526	.2426	
.17	.0835	.1042	.7513	.1178	.1774	_1691	.1629	.0530	.2290	
.16	.0811	.0985	.7332	.1106	.1530	_1530	.1446	.0533	.2153	
.15	.0739	.0929	.7142	.1025	.1347	.1321	.1272	.0516	.2015	
.14	.0668	.0571	.6940	.0963	.1176	.1153	.1111	.0482	.1082	
.13	.0600	.0813	.6726	.0892	.1016	.0996	.0950	.0445	.1745	
.12	.0534	.0755	.6499	.0892	.0968	.0951	.0820	.0411	.1611	
.11	.0670	.0695	.6258	.0822	.0731	.0151	.0691	.0375	.1611	

Appendix 8F-6 Velocity Head and Resistance Computations Factors for Circular Conduits Flowing Full and Partly Full

Table 3. -- Velocity head and resistance computation factors for circular conduits flowing full and partly full

Column A:	Relative depth of flow, d/D
Column B:	Relative velocity head
	$h_{\mu}D = \alpha V^{2}/2gD, \alpha = 1.00, Q/D^{2.3} = 1.0$
	V = Mean flow velocity
	a = Kinetic energy correction factor
	r= Accel due to gravity = 32.16 ft./sec./sec.
Column C.	Resistance computation factor (K.) for the
coronan e.	Manajar emission V=/1 496/a\(P)1/3/5)1/3
	S = Onet/2 200 P+0.41 = K (-1) D(1) (0) DLAV
	3/= (-R-12.200R-A- = K. (R-10) ((10)-
	K.= 0.4529/(R/D)** (A/D*)*
	A = Flow area in conduit
	S _f = Friction slope
	R = Hydraulic radius
	n= Manning coefficient
Column D:	Resistance computation factor (K.) for the
	Darry equation be (A (1/4R) (V3/2r)
	S - 010757 298 41 - F/O (0/051)1
	Kr= 0.0038811(KID) (AID-)-
	hy = friction head loss, fL
	/= Darcy coefficient
	L = Length of conduit, ft.

(1)	(B)	(C)	(D)	(A)	(B)	(C)	(D)
Relative depth d/D	Relative velocity head $\alpha V^{2}/2gD$ $\alpha = 1.00$ $Q/D^{2.3} = 1.0$	Manning Eq. resistance computation factor K.	Darcy Eq. resistance computation factor K _f	Relative depth d/D	Relative velocity head $\alpha V^2/2gD$ $\alpha = 1.00$. $Q/D^{2.3} = 1.0$	Manning Eq. resistance computation factor K.	Darcy Eq. resistance computation factor K _f
1.00	0.02520	4.662	0.02520	0.85	0.03071	4.390	0.02532
0.99	.02529	4.293	.02371	.84	.03134	4.470	.02579
.98	.02544	4.174	.02326	.83	.03201	4.560	.02632
.97	.02565	4.104	.02301	.82	.03272	4.657	.02688
.95	.02589	4.061	.02288	.81	.03348	4.764	.02750
.95	.02618	4.037	.02284	.80	.03426	4.878	.02816
94	.02648	4.028	.02287	.79	.03510	5.004	.02888
.93	.02683	4.033	.02296	.78	.03598	5.137	.02963
.92	.02720	4.046	.02310	.77	.03692	5.282	.03045
.91	.02761	4.071	.02330	.76	.03790	5.438	.03133
.90	.02805	4,105	.02353	.75	.03894	5.605	.03226
.89	.02852	4.145	.02380	.74	.04004	5.787	.03328
.88	.02902	4.195	.02412	.73	.04120	5.981	.03436
.87	.02955	4.251	.02448	.72	.04242	6.188	.03550
.86	.03011	4.317	.02487	.71	.04371	6.411	.03673

LD-294	
(3/20/07)	

Page 1 of 3

DEPARTMENT OF TRANSPORTATION LOCATION AND DESIGN HYDRAULIC COMMENTARY FOR ENVIRONMENTAL PERMIT FOR CULVERTS

LOCATION				
Project :				
Route	:			
PPMS	:			
Station	:			
City/County	:			
Waterway	:			
PREPARED	BY			
Name	:			
Organization	:			
Date	:			
1. Type and si	ize of structu	ıre	Length	
Invert in	out	Height of cover	Drainage Area	
Design Disch	arge	Design Frequency	_ Design Headwater Elev	
100-yr Discha	arge	100-yr Headwater Elev	·	
OHW elevation	on			
Outlet Protect	ion			
2. Temporary	structures for	or construction		
2. comporting				

3. Applicable flood plain management criteria:

Note: Use <u>ONLY the one statement that is applicable and erase all the rest</u>, including this instruction and the FEMA delineation description information.

For project within a FEMA delineated floodplain:

FEMA regulates flood level, flood velocity, and flow distribution and this project is within FEMA community panel number: ______ and Zone _____. This project complies with FEMA requirements because there will be no increase in flood levels, velocities or flow distribution. A copy of an excerpt from the aforementioned map panel showing the crossing site has been included.

FEMA regulates flood level, flood velocity, and flow distribution and this project is within FEMA community panel number: ______ and Zone _____. This project complies with FEMA requirements because a bridge/culvert will be replaced with a hydraulically equivalent replacement structure. A copy of an excerpt from the aforementioned map panel showing the crossing site has been included.

LD-294 (3/20/07) Page 2 of 3

DEPARTMENT OF TRANSPORTATION LOCATION AND DESIGN HYDRAULIC COMMENTARY FOR ENVIRONMENTAL PERMIT FOR CULVERTS

For project permits in a FEMA floodplain carrying a **Zone** A (or **Zone** X) designation that does not have base flood elevations. In such instances, an increase in 100-year flood level not exceeding one foot is acceptable.

FEMA regulates flood level, flood velocity, and flow distribution and this project is within FEMA community panel number: ______ and Zone A (or X). This project complies with FEMA requirements because there will be no more than a one foot increase in flood levels, velocities and flow distribution will not be changed significantly. A copy of an excerpt from the aforementioned map panel showing the crossing site has been included.

For projects not within a FEMA floodplain, include the following statement:

FEMA regulates flood level, flood velocity and flood distributions and this project is not within a designated or delineated FEMA floodplain. The project complies because there are no FEMA requirements applicable within the project area.

4. EROSION AND SEDIMENT CONTROL

An erosion and sediment control plan will be prepared and implemented in compliance with the Erosion and Sediment Control Law, the Erosion and Sediment Control Regulations, and VDOTs Annual Erosion and Sediment Control Standards and Specifications approved by the Department of Conservation and Recreation.

5. STORMWATER MANAGEMENT

Design of this project will be in compliance with the Stormwater Management Act, the Stormwater Management Regulations, and VDOTs Annual Stormwater Management Standards and Specifications approved by the Department of Conservation and Recreation.

6. COUNTERSINKING AND MULTIPLE BARRELL CULVERTS

Note: Use ONLY the statements that are applicable and erase all the rest.

The upstream and downstream inverts of culverts with diameters greater than 24" (or equivalent) will be countersunk a minimum of 6" below the stream bed.

The upstream and downstream inverts of culverts with diameters equal to or less than 24" (or equivalent) will be countersunk a minimum of 3" below the stream bed.

At least one barrel of a multiple barrel culvert structure will be countersunk a minimum of 6" for a diameter greater than 24" (or equivalent) or a minimum of 3" for a diameter equal to or less than 24" (or equivalent).

The width of the countersunk culvert barrel(s) receiving the low flow is approximately the width of the normal stream bed.

LD-294 (3/20/07) Page 3 of 3

DEPARTMENT OF TRANSPORTATION LOCATION AND DESIGN HYDRAULIC COMMENTARY FOR ENVIRONMENTAL PERMIT FOR CULVERTS

Low flow design measures have been implemented for multiple barrel culverts in which all barrels will be countersunk.

Culverts on bedrock will be countersunk a minimum of 3" below the stream bed.

Culverts on bedrock will be countersunk at the upstream end a minimum of 3" and at the downstream end stone step pools, low rock weirs or other measures will be constructed.

Countersinking of the culverts is not practicable due to ______ (See IIM-214.2 Section 4). See attached supporting documentation

7. IMPACT STATEMENT_____