Appendix 8A-1 Definitions and Abbreviations

Definitions:

Culvert A structure which is usually designed hydraulically to take advantage of submergence to increase hydraulic capacity.

A structure used to convey surface runoff through embankments.

A structure, as distinguished from bridges, which is usually covered with embankment and is composed of structural material around the entire perimeter, although some are supported on spread footings with the streambed serving as the bottom of the culvert.

A structure which is 20 ft or less in centerline length between extreme ends of openings for multiple boxes. However, a structure designed hydraulically as a culvert is treated as a culvert in this chapter, regardless of length.

Critical Depth Critical depth is the depth at which the specific energy of a given flow rate is at a minimum. For a given discharge and cross-section geometry there is only one critical depth. Appendix 8C contains critical depth charts for different shapes.

Flow Type The USGS has established seven culvert flow types which assist in determining the flow conditions at a particular culvert site. Diagrams of these flow types are provided in the design methods section.

Free Outlet A free outlet has a tailwater equal to or lower than critical depth. For culverts having free outlets, lowering of the tailwater has no effect on the discharge or the backwater profile upstream of the tailwater.

Improved Inlet An improved inlet has an entrance geometry, which contracts the flow as it enters the barrel thus increasing the capacity of culvert. These inlets are referred to as either side- or slopetapered (walls or walls and bottom tapered).

Normal Flow Normal flow occurs in a channel reach when the discharge, velocity and depth of flow do not change throughout the reach. The water surface and channel bottom will be parallel. This

Appendix 8A-1 \quad Definitions and Abbreviations	
Slope	type of flow will exist in a culvert operating on a constant slope provided the culvert is sufficiently long.
A steep slope occurs where critical depth is greater than	
normal depth. A mild slope occurs where critical depth is less	
than normal depth.	

Abbreviations:

AASHTO	American Association of State Highway and Transportation Officials
BLM	Bureau of Land Management Department of Conservation and Recreation
FEMA	Federal Emergency Management Agency
FHWA	Federal Highway Administration
NRCS	National Resource Conservation Service; formerly Soil
	Conservation Service (SCS)
HDS	Hydraulic Design Series
HEC	Hydraulic Engineering Circular
HIRE	Highways in the River Environment
HW	Headwater
NFIA	National Flood Insurance Act
NFIP	National Flood Insurance Program
NOAA	National Oceanic and Atmospheric Administration
RDM	Road Design Manual
TVA	Tennessee Valley Authority
TW	Tailwater
USBR	United States Bureau of Reclamation
USCOE/USACE	United States Army Corps of Engineers
USGS	United States Geological Survey
VDOT	Virginia Department of Transportation

Appendix	8A-2 Symbols	
Symbol	Definition	Units
A	Area of cross section of flow	ft^{2}
B	Barrel or box width	in or ft
$\mathrm{C}_{\text {d }}$	Overtopping coefficient (Weir coefficient)	-
Cr_{r}	Discharge coefficient	-
D	Culvert diameter or barrel height	in or ft
d	Depth of flow	
d_{50}	Mean stone size diameter	in or ft
d_{B}	Critical depth at riprap basin overflow	ft
d_{c}	Critical depth	ft
d_{E}	Equivalent brink depth	ft
d_{n} or d_{0}	Normal depth	ft
F_{r}	Froude Number	-
g	Acceleration due to gravity	$\mathrm{ft} / \mathrm{s}^{2}$
H	Total headloss	ft
H_{b}	Bend headloss	ft
H_{E}	Entrance headloss	ft
H_{f}	Friction losses	ft
H_{g}	Grate losses	ft
H_{j}	Junction losses	ft
H_{L}	Total energy losses	ft
H_{0}	Outlet or exit headloss	ft
$\mathrm{h}_{\text {s }}$	Depth of riprap basin	ft
H_{v}	Velocity head	ft
h_{0}	Hydraulic grade line height above outlet invert	ft
HW	Headwater depth (subscript indicates section)	ft
HW	Headwater depth as a function of inlet control	ft
HWo	Headwater depth above outlet invert	ft
HW ${ }_{\text {oi }}$	Headwater depth as a function of outlet control	ft
HW_{r}	Headwater depth above roadway	ft
K_{e}	Entrance loss coefficient	-
k_{t}	Submergence coefficient	-
L	Length of culvert or length of roadway crest	ft
L_{B}	Length of riprap basin	ft
L_{s}	Length of dissipating pool	ft
n	Manning's roughness coefficient	-
P_{w}	Wetted perimeter	ft
Q	Discharge	cfs
$\mathrm{Q}_{\text {d }}$	Discharge through the culvert	cfs

Appendix	8A-2	
Symbol	Definition	$\underline{\text { Units }}$
Q_{t}	Design or check discharge at culvert	cfs
R	Hydraulic radius (A/P)	ft
S_{o}	Slope of culvert	$\mathrm{ft} / \mathrm{ft}$
TW	Tailwater depth above invert of culvert	ft
V	Average velocity of flow	fps
V_{B}	Average velocity at riprap basin overflow	fps
V_{d}	Average velocity in downstream channel	fps
V_{L}	Average velocity at length (L) downstream from brink	fps
V_{o}	Average velocity of flow at culvert outlet	fps
V_{u}	Average velocity in upstream channel	fps
W_{B}	Width of riprap basin at overflow	ft
W_{o}	Width dimension of culvert shape	ft
γ	Unit weight of water	$\mathrm{lbs} / \mathrm{ft}^{3}$

Appendix 8B-1
 Culvert Design Form LD-269

Source:

Appendix 8C-1 Inlet Control, Circular Concrete

Source:
HDS -5

Appendix 8C-2 Inlet Control, Circular Corrugated Metal
CHART 2

Appendix 8C-3 Inlet Control, Circular with Beveled Ring

CHART 3

Appendix 8C-4

Critical Depth, Circular

CHART 4

[^0]
Appendix 8C-5 Outlet Control, Circular Concrete

CHART 5

HEAD FOR
CONCRETE PIPE CULVERTS
FLOWING FULL
$n=0.012$

Source: HDS-5

Appendix 8C-6

Outlet Control,

 Circular Corrugated Metalcurem of public mohos jan 1963

> HEAD FOR
> STANDARD
> C. M. PIPE CULVERTS
> FLOWING FULL $n=0.024$

Appendix 8C-7
 Outlet Control, Circular Structural Plate Corrugated Metal

BUAEAU OF PUELIC ROAOS JAN. 1963

Source:
HDS-5

Appendix 8C-9
 Inlet Control, Concrete Box, Flared Wingwalls at 18° to 33.7° and 45°, Beveled Top Edge

Source:
HDS-5

Inlet Control, Concrete Box, 90° Headwall, Chamfered or Beveled Edges

CHART 10

-7FT D=5 EXAMPLE

HEADWATER DEPTH FOR INLET CONTROL RECTANGULAR BOX CULVERTS 90° HEADWALL CHAMFERED OR BEVELED INLET EDGES

Source:
HDS-5

Appendix 8C-12 Inlet Control, Concrete Box, Flared Wingwalls, Normal and Skewed Inlets, Chamfered Top Edge

Source: HDS-5

Source:
HDS-5

Appendix 8C-14 Critical Depth, Concrete Box

CRITICAL DEPTH
ourean of puelic roads man 1963
RECTANGULAR SECTION

Appendix 8C-16
 Inlet Control, Corrugated Metal Box, RiselSpan <0.3

Source:
HDS-5

Source:
HDS-5


```
Source: HDS-5
```


Appendix 8C-21
 Outlet Control, Corrugated Metal Box, Concrete Bottom Rise/Span <0.3

CHART 21

Submergeo outlet culvert flowing ful

Nomographs adapted from material furnished by

Kaiser Aluminum and Chemical Corporation

Dupticalion of this nomiograph may distort scale

HEAD FOR
C. M. BOX CULVERTS

FLOWING FULL CONCRETE BOTTOM

Appendix 8C-23 Outlet Control, Corrugated Metal Box, Concrete Bottom, $0.4 \leq$ Rise/Span <0.5

©
20-57 0.026
58-142 0.025
0.024

SUBMERGED OUTLET CULVERT FLOWING FULL

HEAD FOR
C.M.BOX CULVERTS

FLOWING FULL CONCRETE BOTTOM
$0.4 \leq$ RISE /SPAN <0.5

Nomographs adapted from material furnished by
Kaiser Aluminum and Chemical Corporation

Duplication of this nomograph may distort scale

Appendix 8C-25 Outlet Control, Corrugated Metal Box, Corrugated Metal Bottom, Rise/Span <0.3

HEAD FOR
C. M. BOX CULVERTS

FLOWING FULL
CORRUGATED METAL BOTTOM RISE /SPAN < 0.3
RISE /SPAN <0.3

Nomographs adapted from material furnished by
Kaiser Aluminum and Chemical Corporation
Duplication of this nomograph may distort scate

SUBMERGED OUTLET CULVERT FLOWING FULL

Source: HDS-5

Appendix 8C-24
 Outlet Control, Corrugated Metal Box, Concrete Bottom $0.5 \leq$ Rise/Span

\square

CHART 24

Duplication of this nomograph may distort scaie

Appendix 8C-26 Outlet Control, Corrugated Metal Box, Corrugated Metal Box,
 $0.3 \leq$ Rise/Span <0.4

CHART 26

Duplication of this nomograph may distort scale

Source: HDS-5

Appendix 8C-27 Outlet Control, Corrugated Metal Box, Corrugated Metal Bottom, $0.4 \leq$ Rise/Span <0.5

Appendix 8C-28 Outlet Control, Corrugated Metal Box, Corrugated Metal Bottom, $0.5 \leq$ Rise/Span

Appendix 8C-29 Inlet Control, Oval Concrete, Long Axis Horizontal

HEADWATER DEPTH FOR OVAL CONCRETE PIPE CULVERTS LONG AXIS HORIZONTAL WITH INLET CONTROL

Source:

Appendix 8C-30 Inlet Control, Oval Concrete, Long Axis Vertical

HEADWATER DEPTH FOR
OVAL CONCRETE PIPE CULVERTS LONG AXIS VERTICAL WITH INLET CONTROL

Appendix 8C-31 Critical Depth, Oval Concrete, Long Axis Horizontal

Source:

Appendix 8C-35

Inlet Control, Structural Plate Pipe-Arch, 18" Corner Radius

CHART 35

Appendix 8C-47 Outlet Control, Corrugated Metal Arch, Concrete Bottom, $0.5 \leq$ Rise/Span

CHART 47

SUbmerged outiet culvert flowing full

HEAD FOR
 C.M. ARCH CULVERTS
 FLOWING FULL CONCRETE BOTTOM $0.5 \leq$ RISE / SPAN

Nomographs adapted from material furnished by
Kaiser Aluminum and Chemical Corporation

Appendix 8C-34

Inlet Control, Corrugated Metal Pipe-Arch

CHART 34

* adoitional sizes not dimensioned are LISTED IN FABRICATOR'S CATALOG

BUREAU OF PUBLIC ROADS JAN. I963

HEADWATER DEPTH FOR C. M. PIPE-ARCH CULVERTS WITH INLET CONTROL

Source:
HDS-5

Appendix 8C-33 Outlet Control, Oval Concrete, Long Axis Horizontal or Vertical

CHART 33

HEAD FOR
OVAL CONCRETE PIPE CULVERTS
LONG AXIS HORIZONTAL OR VERTICAL FLOWING FULL
bureau of public roads jan. 1963

```
n=0.012
```

Source:
HDS-5

Appendix 8C-32 Critical Depth, Oval Concrete, Long Axis Vertical

BUREAU OF PUBLIC ROADS
JAN. 1964

CRITICAL DEPTH OVAL CONCRETE PIPE LONG AXIS VERTICAL

Appendix 8C-36

Inlet Control, Structural Plate Pipe-Arch, 31" Corner Radius

CHART 36

EXAMPLE			
SIZE 17.4'x 11.5 ' $0=$			
PROJEC		HEADWALL	
		NOBEV	Beven
HW $/ 0$	164	1.45	132
HW FT	18.9	16.7	15.2

TYPE OF INLET
90° HEADWALL

Source:
HDS-5

Appendix 8C-37
 Critical Depth, Standard Corrugated Metal Pipe-Arch

CHART 37

BUREAU OF PUBLIC ROADS
JAN. 1964

CRITICAL DEPTH STANDARD C.M. PIPE-ARCH

Appendix 8C-38 Critical Depth, Structural Plate Corrugated Metal Pipe-Arch,

 18" Corner Radius

bureau of public roads JAN. 1964

CRITICAL DEPTH STRUCTURAL PLATE
C. M. PIPE - ARCH

IB INCH CORNER RADIUS

Appendix 8C-39 Outlet Control, Standard Corrugated Metal Pipe-Arch

CHART 39

HEAD FOR
STANDARD C. M. PIPE-ARCH CULVERTS FLOWING FULL
bureau of public roads jan. 1963
$\mathrm{n}=0.024$

Source:
HDS-5

Appendix 8C-40
 Outlet Control, Structural Plate Corrugated Metal
 Pipe-Arch, 18" Corner Radius

CHART 40

bureau of puelic roados jan. 1963

Source: HDS-5

Appendix 8C-41 Inlet Control, Corrugated Metal Arch, $0.3 \leq$ Rise/Span <0.4

CHART 41

(4) Mitered to embankment.
(5) Thin wall projecting corrugated metal.

Duplication of this nomograph may distort scale
Nomographs adapted from material furnished by
Kaiser Aluminum and Chemical Corporation

Appendix 8C-42 Inlet Control, Corrugated Metal Arch, $0.4 \leq$ Rise/Span <0.5

CHART 42

Source:
HDS-5

Appendix 8C-43 Inlet Control, Corrugated Metal Arch, $0.5 \leq$ Rise/Span

CHART 43

(2)
(4) (5)

Source: HDS-5

CHART 44

Source: HDS-5

Appendix 8C-45 Outlet Control, Corrugated Metal Arch, Concrete Bottom, $0.3 \leq$ Rise/Span <0.4

Nomographs adapted from material furnished by Kaiser Aluminum and Chemical Corporation

Source: HDS-5

Chart 8C-60 Discharge Coefficients for Roadway Overtopping

A) DISCHARGE COEFFICIENT FOR $H_{W} / L_{r}>0.15$

B) DISCHARGE COEFFICIENT FOR
 $H W_{r} / L_{r} \leq 0.15$

DISCHARGE COEFFICIENTS
FOR ROADWAY OVERTOPPING

Source: HDS-5

Appendix 8C-46 Outlet Control, Corrugated Metal Arch, Concrete Bottom, $0.4 \leq$ Rise/Span <0.5

CHART 46

Nomographs adapted from material furnished by
Kaiser Aluminum and Chemical Corporation

Appendix 8C-50 Outlet Control, Corrugated Metal Arch, Earth Bottom, $0.5 \leq$ Rise/Span

$\mathrm{S}_{\text {Chart } 50}$

Submerged outlet culvert flowing full

HEAD FOR
 C.M. ARCH CULVERTS

FLOWING FULL
Nomographs adapted from material furnished by Kaiser Aluminum and Chemical Corporation

Ouplication of inis nomograph may distort scale
Source:
HDS-5

Appendix 8C-49 Outlet Control, Corrugated Metal Arch, Earth Bottom, $0.4 \leq$ RiselSpan < 0.5

Duplication of this nomograph may distort scale
Source: HDS-5

Appendix 8C-48 Outlet Control, Corrugated Metal Arch, Earth Bottom,
 $0.3 \leq$ RiselSpan < 0.4

submergeo outlet culvert flowing fulleARTH BOTTOM ($n_{b}=0.022$)
Nomographs adapted from material furnished by
$0.3 \leq$ RISE / SPAN < 0.4
Kiser Aluminum and Chemical Corporation

Duplication of this nomograph may distort scale
Source:
HDS-5

Circular or Elliptical

CHART 51

Source:

Appendix 8C-54 Critical Depth, Structural Plate Arch, Low and High Profile

Source: HDS-5

Appendix 8C-53 Critical Depth, Structural Plate Ellipse, Long Axis Horizontal

Source: HDS-5

Chart 8C-55 Throat Control, Circular Section, Side-Tapered
CHART 55

THROAT CONTROL
FOR SIDE - TAPERED INLETS TO PIPE CULVERT (CIRCULAR SECTION ONLY)

$$
9-D-58
$$

Source: HDS-5

Chart 8C-56 Face Control, Non-Rectangular Section, Side-Tapered to Circular
(

FACE CONTROL FOR SIDE - TAPERED INLETS TO PIPE CULVERTS (NON-RECTANGULAR SECTIONS ONLY)

$$
9-D-59
$$

Chart 8C-57 Throat Control, Box Section, Tapered Inlet

THROAT CONTROL FOR BOX CULVERTS WITH TAPERED INLETS

$$
9-D-60
$$

Appendix 8C-58 Face Control, Box Section, Side-Tapered

FACE CONTROL FOR BOX CULVERTS WITH SIDE TAPERED RLETS

Source: HDS-5

Appendix 8C-59 Face Control, Box Section, Slope-Tapered

(1) CHART $_{\text {(2) }} 59$

FACE CONTROL FOR BOX
CULVERTS WITH SLOPE
TAPERED INLETS

Source:
HDS-5

Chart 8C-60 Discharge Coefficients for Roadway Overtopping

A) DISCHARGE COEFFICIENT FOR $H_{W} / L_{r}>0.15$

B) DISCHARGE COEFFICIENT FOR
 $H W_{r} / L_{r} \leq 0.15$

DISCHARGE COEFFICIENTS
FOR ROADWAY OVERTOPPING

Source: HDS-5

Appendix 8C-61 Circular Pipe Flow Chart (Diameter = 12")

PIPE FLOW CHART 12-INCH DIAMETER

Appendix 8C-63 Circular Pipe Flow Chart (Diameter = 18")

Source:
HDS-3

Appendix 8C-62 Circular Pipe Flow Chart (Diameter = 15")

PIPE FLOW CHART 15-INCH DIAMETER

Appendix 8C-64 Circular Pipe Flow Chart (Diameter = 21")

PIPE FLOW CHART
2I-INCH DIAMETER
Source:
HDS-3

Appendix 8C-65 Circular Pipe Flow Chart (Diameter = 24")

PIPE FLOW CHART
24-INCH DIAMETER
Source:
HDS-3

Appendix 8C-66 Circular Pipe Flow Chart (Diameter = 27")

Appendix 8C-67 Circular Pipe Flow Chart (Diameter = 30")

PIPE FLOW CHART
$30-$ INCH DIAMETER

Appendix 8C-68 Circular Pipe Flow Chart (Diameter = 33")

Source:

Appendix 8C-69 Circular Pipe Flow Chart (Diameter = 36")

Appendix 8C-70 Circular Pipe Flow Chart (Diameter = 42")

Appendix 8C-71 Circular Pipe Flow Chart (Diameter 48")

Source:
HDS-3

Appendix 8C-72 Circular Pipe Flow Chart (Diameter = 54")

PIPE FLOW CHART
$54-$ INCH DIAMETER
Source:

Appendix 8C-73 Circular Pipe Flow Chart (Diameter = 60")

Appendix 8C-74 Circular Pipe Flow Chart (Diameter = 66")

Appendix 8C-75 Circular Pipe Flow Chart (Diameter = 72")

PIPE FLOW CHART
72-INCH DIAMETER

Appendix 8C-76 Circular Pipe Flow Chart (Diameter = 84")

PIPE FLOW CHART 84-INCH DIAMETER

Appendix 8C-77 Circular Pipe Flow Chart (Diameter = 96")

Appendix 8C-78 Rectangular Channel Flow Chart (B=2')

Appendix 8C-79 Rectangular Channel Flow Chart (B=3')

Source:
HDS-3

Appendix 8C-80 Rectangular Channel Flow Chart (B=4')

Appendix 8C-81 Rectangular Channel Flow Chart (B=5')

Appendix 8C-82 Rectangular Channel Flow Chart ($\mathrm{B}=\mathbf{6}^{\prime}$)

Source:

Appendix 8C-83 Rectangular Channel Flow Chart (B=7')

Appendix 8C-84 Rectangular Channel Flow Chart (B=8')

Appendix 8C-85 Rectangular Channel Flow Chart (B=9')

Source:
HDS-3

Appendix 8C-86 Rectangular Channel Flow Chart ($\mathrm{B}=10^{\prime}$)

Appendix 8C-87 Rectangular Channel Flow Chart ($\mathrm{B}=12$ ')

Appendix 8C-88 Rectangular Channel Flow Chart ($\mathrm{B}=14$ ')

Appendix 8C-89 Rectangular Channel Flow Chart ($\mathrm{B}=16$ ')

Appendix 8C-90 Rectangular Channel Flow Chart ($\mathrm{B}=18$ ')

Appendix 8C-91 Rectangular Channel Flow Chart ($\mathrm{B}=20^{\prime}$)

Appendix 8D-1	Recommended Manning's n-Values	
Type of Conduit	Wall Description	Manning's n
Concrete Pipe	Smooth walls	0.010-0.013
Concrete Boxes	Smooth walls	0.012-0.015
Corrugated Metal	2 2/3 by $1 / 2$ inch corrugations	0.022-0.027
Pipes and Boxes Annular or Helical Pipe (n varies	6 by 1 inch corrugations	0.022-0.025
Barrel size) See HDS5	5 by 1 inch corrugations	0.025-0.026
	3 by 1 inch corrugations	0.027-0.028
	6 by 2 inch structural plate	0.033-0.035
	9 by 2 1/2 inch structural plate	0.033-0.037
Corrugated Metal	2 2/3 by 1/2 inch corrugations	0.012-0.024
Pipes, Helical Corrugations, Full Circular Flow		
Spiral Rib Metal	Smooth walls	0.011-0.012
*Note 1:	The Values indicated in this table are recommended Manning's " n " design values. Actual Field values for older existing pipelines may vary depending on the effects of abrasion, corrosion, deflection and joint conditions. Concrete pipe with poor joints and deteriorated walls may have " n " values of 0.014 to 0.018 . Corrugated metal pipe with joint and wall problems may also have higher " n " values, and in addition, may experience shape changes which could adversely effect the general hydraulic characteristics of the culvert.	
Note 2:	For further information concer selected conduits consult Hyd Culverts, Federal Highway Ad 4.	ng Manning n values for ulic Design of Highway inistration, HDS No. 5, Table

Source: HDS-5

Appendix 8D-2 Entrance Loss Coefficients $\left(\mathrm{K}_{\mathrm{e}}\right)$, Outlet Control, Full or Partly Full

Type of Structure and Design of Entrance
Coefficient
Pipe, Concrete
$\begin{array}{ll}\text { Mitered to conform to fill slope } & 0.7\end{array}$
*End-Section conforming to fill slope 0.5
$\begin{array}{ll}\text { Projecting from fill, sq. cut end } & 0.5\end{array}$
Headwall or headwall and wingwalls
Square-edge
Rounded (radius $=$ D/12) 0.2
Socket end of pipe (groove-end) 0.2
Projecting from fill, socket end (groove-end) 0.2
Beveled edges, 33.7° or 45° bevels 0.2
$\begin{array}{ll}\text { Side-or slope-tapered inlet } & 0.2\end{array}$
Pipe, or Pipe-Arch, Corrugated Metal
Projecting from fill (no headwall)
Mitered to conform to fill slope, paved or unpaved slope 0.7
Headwall or headwall and wingwalls square-edge 0.5
*End-Section conforming and to fill slope 0.5
Beveled edges, 33.7° or 45° bevels 0.2
Side-or slope-tapered inlet 0.2

Box, Reinforced Concrete
Headwall parallel to embankment (no wingwalls)
$\begin{array}{ll}\text { Square-edged on } 3 \text { edges } & 0.5\end{array}$
Rounded on 3 edges to radius of $\mathrm{D} / 12$ or $\mathrm{B} / 12$ or beveled edges on 3 sides 0.2
$\begin{array}{ll}\text { Wingwalls parallel (extension of sides) } & 0.7 \\ \text { Square-edged at crown }\end{array}$
Wingwalls at 10° to 25° to barrel
$\begin{array}{ll}\text { Square-edged at crown } & 0.5\end{array}$

Wingwalls at 30° to 75° to barrel
Crown edge rounded to radius of D/12 or beveled top edge 0.2
Square Edge at crown 0.4
$\begin{array}{ll}\text { Side-or slope-tapered inlet } & 0.2\end{array}$
*Note :
"End Sections conforming to fill slope," made of either metal or concrete, are the sections commonly available form manufacturers. From limited hydraulic tests they are equivalent in operation to a headwall in both inlet and oulet control. Some end sections, incorporating a closed taper in their design have a superior hydraulic performance. These latter sections can be designed using the information given for the beveled inlet.

Source HDS-5

Appendix 8E-1 Energy Dissipation

8E. 1 Riprap Basin

Riprap basins are used for energy dissipation at the outlets of high velocity culverts.
Riprap basin design is based on laboratory data obtained from full-scale prototypical installations. The principal features of riprap basins are as follows:

1. Pre-shaping and lining with riprap of median size, d_{50}.
2. Constructing the floor at a depth of h_{s} below the invert, where h_{s} is the depth of scour that would occur in a pad of riprap of size d_{50}.
3. Sizing d_{50} so that $2<\mathrm{h}_{\mathrm{s}} / \mathrm{d}_{50}<4$.
4. \quad Sizing the length of the dissipating pool to be $10\left(\mathrm{~h}_{\mathrm{s}}\right)$ or $3\left(\mathrm{~W}_{0}\right)$, whichever is larger for a single barrel. The overall length of the basin is $15\left(\mathrm{~h}_{\mathrm{s}}\right)$ or $4 \mathrm{~W}_{0}$ whichever is larger.
5. Angular rock results are approximately the same as the results of rounded material.
6. Layout details and dimensions are shown on Figure 8E-1.

For high tailwater $\left(\frac{T W}{d_{o}}>0.75\right)$, the following applies:

1. The high velocity core of water emerging from the culvert retains its jet-like character as it passes through the basin.
2. The scour hole is not as deep as with low tailwater and is generally longer.
3. Riprap may be required for the channel downstream of the rock-lined basin.

8E. 2 Design Procedures and Sample Problems

The procedure shown below should be used to determine the dimension for a riprap basin energy dissipator for culvert and pipe installations with pipe velocities greater than or equal to 19 feet per second as classified in Section 8.3.2.6. Maximum Outlet Velocity within the Chapter 8 text.

Step 1: \quad Determine input flow parameters: D_{e} or d_{E}, V_{o}, F_{r} at the culvert outlet

Where:
$d_{E}=$ Equivalent depth at the brink $=\sqrt{\frac{A}{2}}$
Note: $d_{E}=y_{e}$ in Figure 8E-2

Step 2: Check TW
Determine if $\frac{\text { TW }}{d_{o}} \leq 0.75$
Note: $d_{0}=d_{E}$ in Figure 8E-2 for rectangular sections
Step 3 Determine d_{50}
a. Use Figure 8E-2.
b. Select d_{50} / d_{E}. Satisfactory results will be obtained if $0.25<d_{50} / d_{E}<0.45$.
c. Obtain h_{s} / d_{E} using Froude number (F_{r}) and Figure $8 \mathrm{E}-2$.
d. Check if $2<h_{s} / d_{50}<4$ and repeat until a d_{50} is found within the range.

Step 4: Size basin
a. As shown in Figure 8E-1.
b. Determine length of the dissipating pool, $L_{s}=10 h_{s}$ or $3 W_{o}$ minimum.
c. Determine length of basin, $L_{B}=15 h_{s}$ or $4 W_{0}$ minimum.

Thickness of riprap: Approach $=3 \mathrm{~d}_{50}$ or $1.5 \mathrm{~d}_{\text {max }}$ Remainder $=2 \mathrm{~W}_{0}$ or $1.5 \mathrm{~d}_{\text {max }}$

Appendix 8E-1

Energy Dissipation

Step 5: \quad Determine exit velocity at brink $\left(V_{B}\right)$
a. Basin exit depth, $\mathrm{d}_{\mathrm{B}}=$ critical depth at basin exit
b. Basin exit velocity, $V_{B}=\frac{Q}{W_{B} d_{B}}$
c. Compare V_{B} with the average normal flow velocity in the natural channel $\left(V_{d}\right)$

Step 6: High tailwater design

a. Design a basin for low tailwater conditions, Steps 1-5.
b. Compute equivalent circular diameter $\left(\mathrm{D}_{\mathrm{E}}\right)$ for brink area from:
$A=\frac{\pi D_{E}{ }^{2}}{4}=d_{0}\left(W_{o}\right)$
c. Estimate centerline velocity at a series of downstream cross sections using Figure 8E-4.
Size riprap using HEC -11 "Use of Riprap for Bank Protection."1

Step 7: Design Filter
The design filter is necessary unless the streambed material is sufficiently well graded. To deign a filter for riprap, use the procedures in Section 4.4 of HEC-11.

Dissipator geometry can also be computed using the "Energy Dissipator" module that is available in the microcomputer program HY8, Culvert Analysis.

Figure 8E- 1. Details of Riprap Basin Energy Dissipator

Appendix 8E-1

Energy Dissipation

Figure 8E- 2. Riprap Basin Depth of Scour

Appendix 8E-1

DESIGN VALUES (Figure 8E-2)	TRIAL 1	FINAL TRIAL
Equi. Depch. d_{k}		
D_{s} / d_{s}		
D_{s}		
Froude No. Fr		
h_{s} / d_{z}		
h_{s}		
h_{s} / D_{s}		
$2<h_{s} / D_{s}<4$		

BASIN DIMENSIONS		FEET
Pool length is the larger of:	10hs	
	3W.	
Basin length is the larger of:	15hs	
	4 W 。	
Approach Thickness	$3 \mathrm{D}_{5}$	
Basin Thickness	$2 D_{50}$	

TAJLWATER CHECK	
Taitwater. TW	
Equivalent depth. d_{E}	
TW/d ${ }_{6}$	
IF $\mathrm{TW} / \mathrm{d}_{\mathrm{z}}>0.75$. calculate riprap downstream using Figure 8E-4	
$D_{\varepsilon}=\left(4 A_{2} / \pi\right)^{0 s}$	

DOWNSTREAM RIPRAP(Figure 8E-4)				
$L^{\mid c} D_{\mathrm{E}}$	L	$\mathrm{V}_{\mathrm{t}} / \mathrm{V}_{0}$	$\mathrm{~V}_{\mathrm{L}}$	D_{9}
10				
15				
20				
21				

Figure 8E- 3. Riprap Basin Design Checklist

Appendix 8E-1

Energy Dissipation

8E.2.1 Riprap Design for Low Tailwater Condition-Sample Problem

Given: Box culvert: 8.0 ft by 6.0 ft .
Design discharge Q = 800 cfs
Supercritical flow in culvert
Normal flow depth $\mathrm{d}_{\mathrm{o}}=$ brink depth $\mathrm{d}_{\mathrm{E}}=4.0 \mathrm{ft}$
Tailwater depth, TW $=2.8 \mathrm{ft}$
Downstream channel velocity $=18 \mathrm{fps}$
Step 1: \quad Determine input flow parameters: D_{e} or d_{E}, V_{o}, F_{r} at the culvert outlet
$d_{o}=d_{E}$ for rectangular section
$\mathrm{d}_{\mathrm{o}}=\mathrm{d}_{\mathrm{E}}=4.0 \mathrm{ft}$.
$\mathrm{V}_{\mathrm{o}}=\frac{\mathrm{Q}}{\mathrm{A}}=\frac{800}{4.0(8.0)}=25 \mathrm{fps}$
$F_{r}=\frac{V_{o}}{\sqrt{\mathrm{gd}_{\mathrm{E}}}}=\frac{25}{\sqrt{32.2(4.0)}}=2.2<3.0$

Step 2: Check TW:
Determine if $\frac{\text { TW }}{d_{E}}<0.75$
$\frac{2.8}{4.0}=0.70<0.75$
Therefore, $\frac{\text { TW }}{d_{E}}<0.75$, O.K.

Step 3: Determine d_{50} :
a. Use Figure 8E-2
b. \quad Try $\mathrm{d}_{50} / \mathrm{d}_{\mathrm{E}}=0.45$

$$
d_{50}=\left(\frac{d_{50}}{d_{E}}\right) d_{E}=0.45(4.0)=1.8 \mathrm{ft} .
$$

c. Obtain $\mathrm{h}_{\mathrm{S}} / \mathrm{d}_{\mathrm{E}}$ using $\mathrm{F}_{\mathrm{r}}=2.2$ and line $0.41 \leq \mathrm{d}_{50} / \mathrm{d}_{\mathrm{E}} \leq 0.50$
$\mathrm{h}_{\mathrm{S}} / \mathrm{d}_{\mathrm{E}}=1.6$
d. \quad Check if $2<h_{S} / d_{50}<4$:

$$
\begin{aligned}
& \mathrm{h}_{\mathrm{s}}=\left(\frac{\mathrm{h}_{\mathrm{s}}}{\mathrm{~d}_{\mathrm{E}}}\right) \mathrm{d}_{\mathrm{E}}=1.6(4.0)=6.4 \mathrm{ft} \\
& \frac{\mathrm{~h}_{\mathrm{s}}}{\mathrm{~d}_{50}}=\frac{6.4}{1.8}=3.55 \mathrm{ft} \\
& 2<3.55<4, \text { O.K. }
\end{aligned}
$$

Step 4: Size the basin:
a. As shown in Figure 8E-1
b. Determine length of dissipating pool, Ls_{s} :
$\mathrm{L}_{\mathrm{s}}=10 \mathrm{~h}_{\mathrm{S}}=10(6.4)=64 \mathrm{ft}$.
$\mathrm{L}_{s} \min .=3 \mathrm{~W}_{0}=3(8)=24 \mathrm{ft}$
Therefore, use $L_{s}=64 \mathrm{ft}$
c. Determine length of basin, L_{B} :
$L_{B}=15 h_{S}=15(6.4)=96 \mathrm{ft}$
$\mathrm{L}_{\mathrm{B}} \min .=4 \mathrm{~W}_{0}=4(8)=32 \mathrm{ft}$
Therefore, use $L_{B}=96 \mathrm{ft}$
d. Thickness of riprap:

Approach $=3 \mathrm{~d}_{50}=3(1.80)=5.4 \mathrm{ft}$
Remainder $=2 \mathrm{~d}_{50}=2(1.80)=3.6 \mathrm{ft}$
Step 5: \quad Determine V_{B} :
a. $d_{B}=$ Critical depth at basin exit $=3.30 \mathrm{ft}$. (assuming a rectangular cross section with width $\mathrm{W}_{\mathrm{B}}=24 \mathrm{ft}$.)
b. $\quad V_{B}=\frac{Q}{W_{B} d_{B}}=\frac{800}{24(3.3)}=10 \mathrm{fps}$
c. $\mathrm{V}_{\mathrm{B}}=10 \mathrm{fps}<\mathrm{V}_{\mathrm{d}}=18 \mathrm{fps}$

Appendix 8E-1

Energy Dissipation

8E.2.2 Riprap Design for High Tailwater Condition-Sample Problem

Given: Data on the channel and the culvert are the same as Sample Problem 1, except that the new tailwater depth,

TW $=4.2 \mathrm{ft}$.
$\frac{\text { TW }}{d_{o}}=\frac{4.2}{4.0}=1.05>0.75$
Downstream channel can tolerate only 7.0 fps
Steps 1 through 5 are the same as Sample Problem 8E.2.1.
Step 6: High tailwater design:
a. Design a basin for low tailwater conditions, Steps 1-5 as above:
$\mathrm{D}_{50}=1.8 \mathrm{ft}, \mathrm{h}_{\mathrm{S}}=6.4 \mathrm{ft}$
$L_{s}=64 \mathrm{ft}, \mathrm{L}_{\mathrm{B}}=96 \mathrm{ft}$
b. Compute equivalent circular diameter, D_{E}, for brink area from:
$\mathrm{A}=\frac{\pi \mathrm{D}_{\mathrm{E}}{ }^{2}}{4}=\mathrm{d}_{0}\left(\mathrm{~W}_{\mathrm{o}}\right)=4.0(8.0)=32 \mathrm{ft}^{2}$
$D_{E}=\sqrt{\frac{4 \mathrm{~A}}{\pi}}=\sqrt{\frac{4(32)}{\pi}}=6.4 \mathrm{ft}$.
$\mathrm{V}_{0}=25 \mathrm{fps}$ (Sample Problem 8E.2.1).
c. Estimate centerline velocity at a series of downstream cross sections using Figure 8E-5.

$\frac{\mathrm{L}^{1}}{\mathrm{D}_{\mathrm{E}}}$	L	$\frac{\mathrm{V}_{\mathrm{L}}}{\mathrm{V}_{\mathrm{O}}}$	V_{L}	$\mathrm{D}_{50}{ }^{2}$
10	64	0.59	14.7	1.4
15^{3}	96	0.36	9.0	0.6
20	128	0.30	7.5	0.4
21	135	0.28	7.0	0.4

${ }^{1}$ Use $W_{o}=D_{E}$ in Figure 8E- 5.
${ }^{2}$ From Figure 8E- 6.
${ }^{3}$ Is on a logarithmic scale so interpolations must be performed logarithmically.
d. Size riprap using HEC 11. The channel can be lined with the same size rock used for the basin. Protection should extend at least 135 ft downstream.
This information is summarized in the worksheet for riprap basin design, Figure 8E-4.

Appendix 8E-1

design values (Figure 8E-2)	$\underset{1}{\text { TRIAL }}$	FINAL TRIAL
Equi. Depth. d_{E}	4.0 ft	4.0 ft
$\mathrm{D}_{5} / \mathrm{d}_{6}$	0.45	0.45
0_{0}	1.80 ft .	1.80 ft .
Froude No., Fr	2.20	2.20
h^{\prime} / d_{2}	1.60	1.60
h_{5}	6.90种	6.40ft.
$\mathrm{h}_{5} \mathrm{D}_{\infty}$	3.55	3.55
$2<h_{p} / D_{x}<4$	OK	OK

BASIN DIMENSIONS		FEET	
Pool length is the larger of:	10hs	64	64
	$3 W_{0}$	24	
Basin length is the larger of:	15ns	96	96
	4W。	32	
Approach Thickness	$3 \mathrm{D}_{5}$	5.4	
Basin Thickness	$2 \mathrm{D}_{50}$	3.6	

DOWNSTREAM RIPRAP (Figure 8E-4)				
$L D_{\mathrm{E}}$	L	$\mathrm{v}_{\mathrm{L}} \mathrm{N}_{\mathrm{t}}$	V_{L}	$\mathrm{D}_{\boldsymbol{*}}$
10	64	0.59	14,7	1.4
15	96	0.37	9.0	0.6
20	128	0.30	7.5	0.4
21	135	0.28	7.0	0.4

Figure 8E- 4. Riprap Basin Design Worksheet, Sample Problem

Figure XI - 3 Distribution of Centerline Velocity for Flow from Submerged Outets from Reference XI - 2. to be used for Predicting Channel Volocities Downstream from Culvert Outlet where High Tailwater prevaile. Velocities obtained from the use of this Chart can be uned with Figure 2 of HEC Na. 11 for sizing riprap (DO not use Figure 1 HEC No. 11, use Mean Velocity Values)

Figure 8E-5. Distribution of Centerline Velocity for Flow from Submerged Outlets

Appendix 8E-1

Figure 8E- 6. Riprap Size Versus Exit Velocity

Appendix 8E-1
Energy Dissipation

8E.2.3 Computer Output

The dissipator geometry can be computed using the "Energy Dissipator" module, which is available in FHWA's HY8, Culvert Analysis microcomputer program. The output of the culvert data, channel input data, and computed geometry using this module are shown below.

FHWA CULVERT ANALYSIS, HY-8, VERSION 6.0

CURRENT DATE	CURRENT TIME	FILE NAME	FILE DATE
06-02-1997	$15: 23: 59$	ENERGY3	$06-02-1997$

CULVERT NO. 1
CULVERT TYPE: 8.0 ft X 6.0 ft , BOX
CULVERT LENGTH $=300 \mathrm{ft}$
NO. OF BARRELS = 1.0
FLOW PER BARREL= 400 cfs
INVERT ELEVATION $=172.5 \mathrm{ft}$
OUTLET VELOCITY = 25 fps
OUTLET DEPTH $=4.0 \mathrm{ft}$

DOWNSTREAM CHANNEL CHANNEL TYPE: IRREGULAR BOTTOM WIDTH $=8.0 \mathrm{ft}$ TAILWATER DEPTH $=2.8 \mathrm{ft}$ TOTAL DESIGN FLOW = 400 cfs BOTTOM ELEVATION $=172.5 \mathrm{ft}$ NORMAL VELOCITY $=32 \mathrm{fps}$

RIPRAP STILLING BASIN - FINAL DESIGN

THE LENGTH OF THE BASIN $\quad=96.3 \mathrm{ft}$
THE LENGTH OF THE POOL $\quad=64.2 \mathrm{ft}$
THE LENGTH OF THE APRON $\quad=32 \mathrm{ft}$
THE WIDTH OF THE BASIN AT THE OUTLET $=8.0 \mathrm{ft}$
THE DEPTH OF POOL BELOW CULVERT INVERT $=6.4 \mathrm{ft}$
THE THICKNESS OF THE RIPRAP ON THE APRON $\quad=6.6 \mathrm{ft}$
THE THICKNESS OF THE RIPRAP ON THE REST OF THE BASIN $=5.0 \mathrm{ft}$
THE BASIN OUTLET VELOCITY $=17 \mathrm{fps}$
THE DEPTH OF FLOW AT BASIN OUTLET $\quad=6.0 \mathrm{ft}$

Appendix 8F-1 Handling Weight for Corrugated Steel Pipe (2²/3"x¹/2" Corrugations)

Table 1-3 Handling Weight of Corrugated Steel Pipe ($2^{2 / 3} \times 1 / 2$ in) Estimated Average Weights - Not for Specification Use*					
		Approximate Pounds per Lineal Foot **			
Diameter In Inches	Thickness In Inches	Galvanized	FullCoated	Full-Coated and Invert Paved	Full-Coated and Full Paved
12	$\begin{aligned} & .052 \\ & .064 \\ & .079 \end{aligned}$	$\begin{gathered} 8 \\ 10 \\ 12 \end{gathered}$	$\begin{aligned} & 10 \\ & 12 \\ & 14 \end{aligned}$	$\begin{aligned} & 13 \\ & 15 \\ & 17 \end{aligned}$	
15	.052 .064 .079	10 12 15	12 15 18	$\begin{aligned} & 15 \\ & 18 \\ & 21 \end{aligned}$	
18	$\begin{aligned} & .052 \\ & .064 \\ & .079 \end{aligned}$	$\begin{aligned} & 12 \\ & 15 \\ & 18 \end{aligned}$	$\begin{aligned} & 14 \\ & 19 \\ & 22 \end{aligned}$	$\begin{aligned} & 17 \\ & 22 \\ & 25 \end{aligned}$	
21	.052 .064 .079	$\begin{aligned} & 14 \\ & 17 \\ & 21 \end{aligned}$	$\begin{aligned} & 16 \\ & 21 \\ & 25 \end{aligned}$	$\begin{aligned} & 19 \\ & 26 \\ & 30 \end{aligned}$	
24	.052 .064 .079	$\begin{aligned} & 15 \\ & 19 \\ & 24 \end{aligned}$	17 24 29	$\begin{aligned} & 20 \\ & 30 \\ & 35 \end{aligned}$	$\begin{aligned} & 45 \\ & 60 \end{aligned}$
30	.052 .064 .079	20 24 30	22 30 36	$\begin{aligned} & 25 \\ & 36 \\ & 42 \end{aligned}$	$\begin{aligned} & 55 \\ & 60 \end{aligned}$
36	.052 .064 .079	$\begin{aligned} & 24 \\ & 29 \\ & 36 \end{aligned}$	26 36 43	$\begin{aligned} & 29 \\ & 44 \\ & 51 \end{aligned}$	$\begin{aligned} & 65 \\ & 75 \end{aligned}$
42	.052 .064 .079	$\begin{aligned} & 28 \\ & 34 \\ & 42 \end{aligned}$	$\begin{aligned} & 30 \\ & 42 \\ & 50 \end{aligned}$	$\begin{aligned} & 33 \\ & 51 \\ & 59 \end{aligned}$	85
48	.052 .064 .079	$\begin{aligned} & 31 \\ & 38 \\ & 48 \end{aligned}$	$\begin{aligned} & 33 \\ & 48 \\ & 58 \end{aligned}$	$\begin{aligned} & 36 \\ & 57 \\ & 67 \end{aligned}$	95
54	$\begin{aligned} & .064 \\ & .079 \end{aligned}$	$\begin{array}{r} 44 \\ 54 \end{array}$	$\begin{aligned} & 55 \\ & 65 \end{aligned}$	$\begin{aligned} & 66 \\ & 76 \end{aligned}$	$\begin{array}{r} 95 \\ 105 \end{array}$
60	$\begin{aligned} & .079 \\ & .109 \end{aligned}$	$\begin{aligned} & 60 \\ & 81 \end{aligned}$	$\begin{aligned} & 71 \\ & 02 \end{aligned}$	$\begin{array}{r} 85 \\ 106 \end{array}$	140
66	$\begin{aligned} & .109 \\ & .138 \end{aligned}$	$\begin{array}{r} 89 \\ 113 \end{array}$	$\begin{aligned} & 101 \\ & 125 \end{aligned}$	$\begin{aligned} & 117 \\ & 141 \end{aligned}$	$\begin{aligned} & 160 \\ & 180 \end{aligned}$
72	$\begin{aligned} & .109 \\ & .138 \end{aligned}$	$\begin{array}{r} 98 \\ 123 \end{array}$	$\begin{aligned} & 112 \\ & 137 \end{aligned}$	$\begin{aligned} & 129 \\ & 154 \end{aligned}$	$\begin{aligned} & 170 \\ & 210 \end{aligned}$
78	$\begin{aligned} & .109 \\ & .138 \end{aligned}$	$\begin{aligned} & 105 \\ & 133 \end{aligned}$	$\begin{aligned} & 121 \\ & 149 \end{aligned}$	$\begin{aligned} & 138 \\ & 166 \end{aligned}$	$\begin{aligned} & 200 \\ & 230 \end{aligned}$
84	$\begin{aligned} & .109 \\ & .138 \end{aligned}$	$\begin{aligned} & 113 \\ & 144 \end{aligned}$	$\begin{aligned} & 133 \\ & 161 \end{aligned}$	$\begin{aligned} & 155 \\ & 179 \end{aligned}$	$\begin{aligned} & 225 \\ & 240 \end{aligned}$
90	$\begin{aligned} & .109 \\ & .138 \\ & .168 \end{aligned}$	$\begin{aligned} & 121 \\ & 154 \\ & 186 \end{aligned}$	$\begin{aligned} & 145 \\ & 172 \\ & 204 \end{aligned}$	$\begin{aligned} & 167 \\ & 192 \\ & 224 \end{aligned}$	
96	$\begin{aligned} & .138 \\ & .168 \end{aligned}$	$\begin{aligned} & 164 \\ & 198 \end{aligned}$	$\begin{aligned} & 191 \\ & 217 \end{aligned}$	$\begin{aligned} & 217 \\ & 239 \end{aligned}$	

* Lock seam construction only; weights will vary with other fabrication practices.
** For other coatings or linings the weights may be interpolated.
Note: Pipe arch weights will be the same as the equivalent round pipe.
For example; for $42 \times 29,2^{2 / 3} \times 1 / 2$ in Pipe Arch, refer to 36 in diameter pipe weight.
Smooth steel lined CSP weighs approximately 5% more than single wall galvanized.
Source:

Appendix 8F-2 Handling Weight for Corrugated Steel Pipe (3"x1" or $125 \mathrm{~mm} \times 25 \mathrm{~mm}$ Corrugations)

Table 1-4 Handling Weight of Corrugated Steel Pipe (3×1 In or $125 \times 25 \mathrm{~mm}$) Estimated Average Weights-Not for Specification Use*

inside Diameter In Inches	Specified Thickness In Inches	Approximate Pounds per Lineal foot **			
		Galvanized	FullCoated	Full-Coated and Invert Paved	Full-Coated and Full Paved
54	$\begin{aligned} & .064 \\ & .079 \end{aligned}$	$\begin{aligned} & 50 \\ & 61 \end{aligned}$	$\begin{aligned} & 66^{\prime} \\ & 77 \end{aligned}$	$\begin{aligned} & 84 \\ & 95 \end{aligned}$	$\begin{aligned} & 138 \\ & 149 \end{aligned}$
60	$\begin{array}{r} .064 \\ .079 \end{array}$	$\begin{aligned} & 55 \\ & 67 \end{aligned}$	$\begin{aligned} & 73 \\ & 86 \end{aligned}$	93 105	$\begin{aligned} & 153 \\ & 165 \end{aligned}$
66	$\begin{aligned} & .064 \\ & .079 \end{aligned}$	$\begin{aligned} & 60 \\ & 74 \end{aligned}$	$\begin{aligned} & 80 \\ & 94 \end{aligned}$	$\begin{aligned} & 102 \\ & 116 \end{aligned}$	$\begin{aligned} & 168 \\ & 181 \end{aligned}$
72	$\begin{array}{r} .064 \\ .079 \end{array}$	$\begin{aligned} & 66 \\ & 81 \end{aligned}$	$\begin{array}{r} 88 \\ 102 \end{array}$	$\begin{aligned} & 111 \\ & 126 \end{aligned}$	$\begin{aligned} & 183 \\ & 197 \end{aligned}$
78	$\begin{aligned} & .064 \\ & .079 \end{aligned}$	$\begin{aligned} & 71 \\ & 87 \end{aligned}$	95 111	$\begin{aligned} & 121 \\ & 137 \end{aligned}$	$\begin{aligned} & 198 \\ & 214 \end{aligned}$
84	$\begin{array}{r} .064 \\ .079 \end{array}$	$\begin{aligned} & 77 \\ & 94 \end{aligned}$	$\begin{aligned} & 102 \\ & 119 \end{aligned}$	$\begin{aligned} & 130 \\ & 147 \end{aligned}$	$\begin{aligned} & 213 \\ & 230 \end{aligned}$
90	$\begin{aligned} & .064 \\ & .079 \end{aligned}$	$\begin{array}{r} 82 \\ 100 \end{array}$	$\begin{aligned} & 109 \\ & 127 \end{aligned}$	$\begin{aligned} & 140 \\ & 158 \end{aligned}$	$\begin{aligned} & 228 \\ & 246 \end{aligned}$
96	$\begin{array}{r} .064 \\ .079 \end{array}$	$\begin{array}{r} 87 \\ 107 \end{array}$	$\begin{aligned} & 116 \\ & 136 \end{aligned}$	$\begin{aligned} & 149 \\ & 169 \end{aligned}$	$\begin{aligned} & 242 \\ & 262 \end{aligned}$
102	$\begin{aligned} & .064 \\ & .079 \end{aligned}$	$\begin{array}{r} 93 \\ 114 \end{array}$	$\begin{aligned} & 124 \\ & 145 \end{aligned}$	$\begin{aligned} & 158 \\ & 179 \end{aligned}$	$\begin{aligned} & 258 \\ & 279 \end{aligned}$
108	$\begin{array}{r} .054 \\ .079 \end{array}$	$\begin{array}{r} 98 \\ 120 \end{array}$	$\begin{aligned} & 131 \\ & 153 \end{aligned}$	$\begin{aligned} & 166 \\ & 188 \end{aligned}$	$\begin{aligned} & 273 \\ & 295 \end{aligned}$
114	$\begin{aligned} & .064 \\ & .079 \end{aligned}$	$\begin{aligned} & 104 \\ & 127 \end{aligned}$	$\begin{aligned} & 139 \\ & 162 \end{aligned}$	$\begin{aligned} & 176 \\ & 199 \end{aligned}$	$\begin{aligned} & 289 \\ & 312 \end{aligned}$
120	.064 .079 .109	109 134 183	146 171 220	183 210 259	296 329 378
126	$\begin{aligned} & .079 \\ & .109 \end{aligned}$	$\begin{aligned} & 141 \\ & 195 \end{aligned}$	$\begin{aligned} & 179 \\ & 233 \end{aligned}$	$\begin{aligned} & 220 \\ & 274 \end{aligned}$	$\begin{aligned} & 346 \\ & 400 \end{aligned}$
132	$\begin{aligned} & .079 \\ & .109 \end{aligned}$	$\begin{aligned} & 148 \\ & 204 \end{aligned}$	$\begin{aligned} & 188 \\ & 244 \end{aligned}$	$\begin{aligned} & 231 \\ & 287 \end{aligned}$	$\begin{aligned} & 363 \\ & 419 \end{aligned}$
138	$\begin{aligned} & .079 \\ & .109 \end{aligned}$	$\begin{aligned} & 154 \\ & 213 \end{aligned}$	$\begin{aligned} & 196 \\ & 255 \end{aligned}$	$\begin{aligned} & 241 \\ & 300 \end{aligned}$	$\begin{aligned} & 379 \\ & 438 \end{aligned}$
144	$\begin{aligned} & .109 \\ & .138 \end{aligned}$	$\begin{aligned} & 223 \\ & 282 \end{aligned}$	$\begin{aligned} & 267 \\ & 326 \end{aligned}$	$\begin{aligned} & 314 \\ & 317 \end{aligned}$	$\begin{aligned} & 458 \\ & 517 \end{aligned}$

- Lock seam construction only, weights will vary with other fabrication practices.
* for other coatings or linings the weights may be interpolated.
$\cdots 125 \times 25 \mathrm{~mm}$ may be referred to as $5 \times 1 \mathrm{in}$.
and weighs approximately 12% less than $3 \times 1 \mathrm{in}$.
Note: Pipe arch weights will be the same as the equivaient round pipe.
for example; for $42 \times 29,233 \times 1 / 2$ in Pipe Ach, refer to 36 in. diameter pipe weight.
Smooth steel lined CSP weighs approximately 5% more than single wall galvanized.

Source:

Appendix 8F-3

Dimension and Weight

 of Minimum Size Counterweight
DIMENSIONS AND WEIGHT OF MINIMUM SIZE COUNTERWEIGHT

$1 \leqslant A \rightarrow 1$
$A=6 "$
B - D / $2+12{ }^{\prime \prime}$
$C=D+12 "$
D = PIPE DIAMETER

* WEIGHT OF CONCRETE @ 150 LBS. PER CU. FT.

Pipe Diameter (inches)	Dimensions (inches)			Concrete	
D	A	B	C	Volume (cu. ft.)	Weight * (lbs.)
12	6	18	24	1.30	195
15	6	19.5	27	1.52	228
18	6	21	30	1.75	263
24	6	24	36	2.22	333
30	6	27	42	2.71	407
36	6	30	48	3.23	485
42	6	33	54	3.78	567
48	6	36	60	4.36	654
54	6	39	66	4.96	744
60	6	42	72	5.59	839
66	6	45	78	6.25	938
72	6	48	84	6.93	1040

Source:

Appendix 8F-4 Diameter Dimensions and $D^{2.5}$ Values for Structural Plate Corrugated Circular Pipe (9" $\times 21 / 2$ " Aluminum Corrugations)

Diameter (feet)		$\mathrm{D}^{2.5}$	Plates per Ring
Nominal	Actual		2
6.5	6.42	104.4	2
7.0	6.93	126.4	
			3
7.5	7.44	151.0	3
8.0	7.96	178.8	3
8.5	8.46	208.2	3
9.0	8.97	241.0	3
9.5	9.48	276.7	3
10.0	9.99	315.4	3
10.5	10.50	357.2	3
			4
11.0	11.01	402.2	4
11.5	11.52	450.4	4
12.0	12.04	503.0	4
12.5	12.54	556.9	4
13.0	13.05	615.2	4
13.5	13.57	678.3	4
14.0	14.08	743.9	4
14.5	14.59	813.1	5
15.0	15.10	886.0	5

Source:

Appendix 8F-4 Diameter Dimensions and $D^{2.5}$ Values for Structural Plate Corrugated Circular Pipe (9" $\times 21 / 2$ " Aluminum Corrugations)

Diameter (feet)		$\mathrm{D}^{2.5}$	Plates per Ring
Nominal	Actual		2
6.5	6.42	104.4	2
7.0	6.93	126.4	
			3
7.5	7.44	151.0	3
8.0	7.96	178.8	3
8.5	8.46	208.2	3
9.0	8.97	241.0	3
9.5	9.48	276.7	3
10.0	9.99	315.4	3
10.5	10.50	357.2	3
			4
11.0	11.01	402.2	4
11.5	11.52	450.4	4
12.0	12.04	503.0	4
12.5	12.54	556.9	4
13.0	13.05	615.2	4
13.5	13.57	678.3	4
14.0	14.08	743.9	4
14.5	14.59	813.1	5
15.0	15.10	886.0	5

Source:

Appendix 8F-5 Geometric Properties and Critical Flow Factors for Circular Conduits Flowing Full and Partly Full

Source:

Appendix 8F-6 Velocity Head and Resistance Computations Factors
 for Circular Conduits Flowing Full and Partly Full

Table 3. -- Velocity head and resistance computation factors for circular conduits flowing full and partly full
Column A: Relative depth of fiow, d/D
Column 8: Relative velocity head
$h_{1} / D=\alpha / 2 / 28 D, \alpha=1.00, Q / D^{2.3}=1.0$
$V=$ Mean flow velocity
$\alpha=$ Kinetic enerty correction factor
Column C. $\boldsymbol{\delta}^{-}=$Accel due to cravity $=32.16$ ft. $/ \mathrm{sec} / / \mathrm{sec}$
Resistance computation factor (K_{A}) for the
Manning equation, $V=(1.486 / n)(R)^{2 / 2}(S)^{13}$

$K_{t}=0.4529 /(R / D)^{* 3}\left(A / D^{2}\right):$
$A=$ Flow area in conduit
$S_{t}=$ Friction slope
$R=$ Hydraulic radius
$n=$ Manning coefficient

Column D: Resistance computation factor $\left(K_{f}\right)$ for the
Darey equation, $h_{f}=()(L / 4 R)(V / 2 \xi)$
$S_{r}=Q^{2} f 257.28 R A^{2}=K_{r}()^{2}\left(Q D^{=2}\right)^{2}$
$K_{i}=0.003887 /(R / D)\left(A / D^{2}\right)^{2}$
$h_{y}=$ Friction head loss, ft
$i=$ Darcy coefficient
$L=$ Length of conduit, ft.

(4) Relatue depth d/D	(B) Relative velocity head $\begin{gathered} \alpha V^{2} / 28 D \\ \alpha=1.00 \\ Q / D^{2}-3=1.0 \end{gathered}$	(C) Manaing Eq. resistance computation factor K.	(D) Darcy Eq. resistance computation factor K_{f}	(A) Relative depth dID	(B) Relative velocity head $\begin{gathered} a V^{2} / 2 g D \\ \alpha=1.00 . \\ Q / D^{2 . s}=1.0 \end{gathered}$	(C) Manning Eq. resistance computation factor K.	(D) Darcy Eq. resistance eomputation factor $\boldsymbol{K}_{\boldsymbol{f}}$
1.00	0.02520	4.662	0.02520	0.85	0.03071	4.390	0.02532
0.99	. 02529	4.293	. 02371	. 84	. 03134	4.470	. 02579
. 98	. 02544	4.174	. 02326	. 83	. 03201	4.560	. 02632
. 97	. 02565	4.104	. 02301	. 82	. 03272	4.657	. 02688
. 96	. 02589	4.061	. 02288	. 81	. 03318	4.764	. 02750
. 95	. 02618	4.037	. 02284	. 80	. 03426	4.878	. 02816
0.4	. 02648	4.028	.02287	. 79	. 03510	5.004	. 02888
. 93	. 02683	4.033	. 02296	. 78	. 03398	5.137	. 02963
9\%	. 02720	4.046	. 02310	. 77	. 03692	5.282	. 03045
91	. 02761	4.071	. 02330	. 76	. 03790	5.438	. 03133
. 90	. 02805	4, 105	. 02353	. 75	.03894	5.605	. 03226
. 89	. 02852	4.145	. 02380	. 74	. 04004	5.787	. 03328
. 88	. 02902	4.195	. $02+12$. 73	. 04120	5.981	. 03436
. 87	. 02955	4.251	. 02448	. 72	. 04242	6.188	. 03550
. 86	. 03011	4.317	. 02487	. 71	. 04371	6.411	. 03673

DEPARTMENT OF TRANSPORTATION
 LOCATION AND DESIGN
 HYDRAULIC COMMENTARY FOR ENVIRONMENTAL PERMIT FOR CULVERTS

LOCATION
Project :
Route :
PPMS :
Station :
City/County
Waterway :
PREPARED BY
Name :
Organization :
Date

1. Type and size of structure \qquad Length \qquad Invert in \qquad out \qquad Height of cover \qquad Drainage Area \qquad Design Discharge \qquad Design Frequency \qquad Design Headwater Elev. 100-yr Discharge \qquad 100-yr Headwater Elev. \qquad
OHW elevation \qquad
Outlet Protection \qquad
2. Temporary structures for construction \qquad
3. Applicable flood plain management criteria:

Note: Use ONLY the one statement that is applicable and erase all the rest, _including this instruction and the FEMA delineation description information.

For project within a FEMA delineated floodplain:
FEMA regulates flood level, flood velocity, and flow distribution and this project is within FEMA community panel number: \qquad and Zone \qquad . This project complies with FEMA requirements because there will be no increase in flood levels, velocities or flow distribution. A copy of an excerpt from the aforementioned map panel showing the crossing site has been included.

FEMA regulates flood level, flood velocity, and flow distribution and this project is within FEMA community panel number: \qquad and Zone \qquad . This project complies with FEMA requirements because a bridge/culvert will be replaced with a hydraulically equivalent replacement structure. A copy of an excerpt from the aforementioned map panel showing the crossing site has been included.

DEPARTMENT OF TRANSPORTATION
 LOCATION AND DESIGN
 HYDRAULIC COMMENTARY FOR ENVIRONMENTAL PERMIT FOR CULVERTS

For project permits in a FEMA floodplain carrying a Zone A (or Zone \mathbf{X}) designation that does not have base flood elevations. In such instances, an increase in 100-year flood level not exceeding one foot is acceptable.

FEMA regulates flood level, flood velocity, and flow distribution and this project is within FEMA community panel number: \qquad and Zone A (or X). This project complies with FEMA requirements because there will be no more than a one foot increase in flood levels, velocities and flow distribution will not be changed significantly. A copy of an excerpt from the aforementioned map panel showing the crossing site has been included.

For projects not within a FEMA floodplain, include the following statement:
FEMA regulates flood level, flood velocity and flood distributions and this project is not within a designated or delineated FEMA floodplain. The project complies because there are no FEMA requirements applicable within the project area.

4. EROSION AND SEDIMENT CONTROL

An erosion and sediment control plan will be prepared and implemented in compliance with the Erosion and Sediment Control Law, the Erosion and Sediment Control Regulations, and VDOTs Annual Erosion and Sediment Control Standards and Specifications approved by the Department of Conservation and Recreation.

5. STORMWATER MANAGEMENT

Design of this project will be in compliance with the Stormwater Management Act, the Stormwater Management Regulations, and VDOTs Annual Stormwater Management Standards and Specifications approved by the Department of Conservation and Recreation.

6. COUNTERSINKING AND MULTIPLE BARRELL CULVERTS

Note: Use ONLY the statements that are applicable and erase all the rest.

The upstream and downstream inverts of culverts with diameters greater than 24 " (or equivalent) will be countersunk a minimum of 6 " below the stream bed.

The upstream and downstream inverts of culverts with diameters equal to or less than 24 " (or equivalent) will be countersunk a minimum of 3 " below the stream bed.

At least one barrel of a multiple barrel culvert structure will be countersunk a minimum of 6 " for a diameter greater than 24 " (or equivalent) or a minimum of 3 " for a diameter equal to or less than 24 " (or equivalent).

The width of the countersunk culvert barrel(s) receiving the low flow is approximately the width of the normal stream bed.

DEPARTMENT OF TRANSPORTATION
 LOCATION AND DESIGN
 HYDRAULIC COMMENTARY FOR ENVIRONMENTAL PERMIT FOR CULVERTS

Low flow design measures have been implemented for multiple barrel culverts in which all barrels will be countersunk.

Culverts on bedrock will be countersunk a minimum of 3 " below the stream bed.

Culverts on bedrock will be countersunk at the upstream end a minimum of 3 " and at the downstream end stone step pools, low rock weirs or other measures will be constructed.

Countersinking of the culverts is not practicable due to \qquad (See IIM-214.2 Section 4). See attached supporting documentation
7. IMPACT STATEMENT

[^0]: Source: HDS-5

