Appendix 8E-1 Energy Dissipation

8E. 1 Riprap Basin

Riprap basins are used for energy dissipation at the outlets of high velocity culverts.
Riprap basin design is based on laboratory data obtained from full-scale prototypical installations. The principal features of riprap basins are as follows:

1. Pre-shaping and lining with riprap of median size, d_{50}.
2. Constructing the floor at a depth of h_{s} below the invert, where h_{s} is the depth of scour that would occur in a pad of riprap of size d_{50}.
3. Sizing d_{50} so that $2<\mathrm{h}_{\mathrm{s}} / \mathrm{d}_{50}<4$.
4. \quad Sizing the length of the dissipating pool to be $10\left(\mathrm{~h}_{\mathrm{s}}\right)$ or $3\left(\mathrm{~W}_{0}\right)$, whichever is larger for a single barrel. The overall length of the basin is $15\left(\mathrm{~h}_{\mathrm{s}}\right)$ or $4 \mathrm{~W}_{0}$ whichever is larger.
5. Angular rock results are approximately the same as the results of rounded material.
6. Layout details and dimensions are shown on Figure 8E-1.

For high tailwater $\left(\frac{T W}{d_{o}}>0.75\right)$, the following applies:

1. The high velocity core of water emerging from the culvert retains its jet-like character as it passes through the basin.
2. The scour hole is not as deep as with low tailwater and is generally longer.
3. Riprap may be required for the channel downstream of the rock-lined basin.

8E. 2 Design Procedures and Sample Problems

The procedure shown below should be used to determine the dimension for a riprap basin energy dissipator for culvert and pipe installations with pipe velocities greater than or equal to 19 feet per second as classified in Section 8.3.2.6. Maximum Outlet Velocity within the Chapter 8 text.

Step 1: \quad Determine input flow parameters: D_{e} or d_{E}, V_{o}, F_{r} at the culvert outlet

Where:
$d_{E}=$ Equivalent depth at the brink $=\sqrt{\frac{A}{2}}$
Note: $d_{E}=y_{e}$ in Figure 8E-2

Step 2: Check TW
Determine if $\frac{\text { TW }}{d_{o}} \leq 0.75$
Note: $d_{0}=d_{E}$ in Figure 8E-2 for rectangular sections
Step 3 Determine d_{50}
a. Use Figure 8E-2.
b. Select d_{50} / d_{E}. Satisfactory results will be obtained if $0.25<d_{50} / d_{E}<0.45$.
c. Obtain h_{s} / d_{E} using Froude number (F_{r}) and Figure $8 \mathrm{E}-2$.
d. Check if $2<h_{s} / d_{50}<4$ and repeat until a d_{50} is found within the range.

Step 4: Size basin
a. As shown in Figure 8E-1.
b. Determine length of the dissipating pool, $L_{s}=10 h_{s}$ or $3 W_{o}$ minimum.
c. Determine length of basin, $L_{B}=15 h_{s}$ or $4 W_{0}$ minimum.

Thickness of riprap: Approach $=3 \mathrm{~d}_{50}$ or $1.5 \mathrm{~d}_{\text {max }}$ Remainder $=2 \mathrm{~W}_{0}$ or $1.5 \mathrm{~d}_{\text {max }}$

Appendix 8E-1

Energy Dissipation

Step 5: \quad Determine exit velocity at brink $\left(V_{B}\right)$
a. Basin exit depth, $\mathrm{d}_{\mathrm{B}}=$ critical depth at basin exit
b. Basin exit velocity, $V_{B}=\frac{Q}{W_{B} d_{B}}$
c. Compare V_{B} with the average normal flow velocity in the natural channel $\left(V_{d}\right)$

Step 6: High tailwater design

a. Design a basin for low tailwater conditions, Steps 1-5.
b. Compute equivalent circular diameter $\left(\mathrm{D}_{\mathrm{E}}\right)$ for brink area from:
$A=\frac{\pi D_{E}{ }^{2}}{4}=d_{0}\left(W_{o}\right)$
c. Estimate centerline velocity at a series of downstream cross sections using Figure 8E-4.
Size riprap using HEC -11 "Use of Riprap for Bank Protection."1

Step 7: Design Filter
The design filter is necessary unless the streambed material is sufficiently well graded. To deign a filter for riprap, use the procedures in Section 4.4 of HEC-11.

Dissipator geometry can also be computed using the "Energy Dissipator" module that is available in the microcomputer program HY8, Culvert Analysis.

Figure 8E- 1. Details of Riprap Basin Energy Dissipator

Appendix 8E-1

Energy Dissipation

Figure 8E- 2. Riprap Basin Depth of Scour

Appendix 8E-1

DESIGN VALUES (Figure 8E-2)	TRIAL 1	FINAL TRIAL
Equi. Depch. d_{k}		
D_{s} / d_{s}		
D_{s}		
Froude No. Fr		
h_{s} / d_{z}		
h_{s}		
h_{s} / D_{s}		
$2<h_{s} / D_{s}<4$		

BASIN DIMENSIONS		FEET
Pool length is the larger of:	10hs	
	3W.	
Basin length is the larger of:	15hs	
	4 W 。	
Approach Thickness	$3 \mathrm{D}_{5}$	
Basin Thickness	$2 D_{50}$	

TAJLWATER CHECK	
Taitwater. TW	
Equivalent depth. d_{E}	
TW/d ${ }_{6}$	
IF $\mathrm{TW} / \mathrm{d}_{\mathrm{z}}>0.75$. calculate riprap downstream using Figure 8E-4	
$D_{\varepsilon}=\left(4 A_{2} / \pi\right)^{0 s}$	

DOWNSTREAM RIPRAP(Figure 8E-4)				
$L^{\mid c} D_{\mathrm{E}}$	L	$\mathrm{V}_{\mathrm{t}} / \mathrm{V}_{0}$	$\mathrm{~V}_{\mathrm{L}}$	D_{9}
10				
15				
20				
21				

Figure 8E- 3. Riprap Basin Design Checklist

Appendix 8E-1

Energy Dissipation

8E.2.1 Riprap Design for Low Tailwater Condition-Sample Problem

Given: Box culvert: 8.0 ft by 6.0 ft .
Design discharge Q = 800 cfs
Supercritical flow in culvert
Normal flow depth $\mathrm{d}_{\mathrm{o}}=$ brink depth $\mathrm{d}_{\mathrm{E}}=4.0 \mathrm{ft}$
Tailwater depth, TW $=2.8 \mathrm{ft}$
Downstream channel velocity $=18 \mathrm{fps}$
Step 1: \quad Determine input flow parameters: D_{e} or d_{E}, V_{o}, F_{r} at the culvert outlet
$d_{o}=d_{E}$ for rectangular section
$\mathrm{d}_{\mathrm{o}}=\mathrm{d}_{\mathrm{E}}=4.0 \mathrm{ft}$.
$\mathrm{V}_{\mathrm{o}}=\frac{\mathrm{Q}}{\mathrm{A}}=\frac{800}{4.0(8.0)}=25 \mathrm{fps}$
$F_{r}=\frac{V_{o}}{\sqrt{\mathrm{gd}_{\mathrm{E}}}}=\frac{25}{\sqrt{32.2(4.0)}}=2.2<3.0$

Step 2: Check TW:
Determine if $\frac{\text { TW }}{d_{E}}<0.75$
$\frac{2.8}{4.0}=0.70<0.75$
Therefore, $\frac{\text { TW }}{d_{E}}<0.75$, O.K.

Step 3: Determine d_{50} :
a. Use Figure 8E-2
b. \quad Try $\mathrm{d}_{50} / \mathrm{d}_{\mathrm{E}}=0.45$

$$
d_{50}=\left(\frac{d_{50}}{d_{E}}\right) d_{E}=0.45(4.0)=1.8 \mathrm{ft} .
$$

c. Obtain $\mathrm{h}_{\mathrm{S}} / \mathrm{d}_{\mathrm{E}}$ using $\mathrm{F}_{\mathrm{r}}=2.2$ and line $0.41 \leq \mathrm{d}_{50} / \mathrm{d}_{\mathrm{E}} \leq 0.50$
$\mathrm{h}_{\mathrm{S}} / \mathrm{d}_{\mathrm{E}}=1.6$
d. \quad Check if $2<h_{S} / d_{50}<4$:

$$
\begin{aligned}
& \mathrm{h}_{\mathrm{s}}=\left(\frac{\mathrm{h}_{\mathrm{s}}}{\mathrm{~d}_{\mathrm{E}}}\right) \mathrm{d}_{\mathrm{E}}=1.6(4.0)=6.4 \mathrm{ft} \\
& \frac{\mathrm{~h}_{\mathrm{s}}}{\mathrm{~d}_{50}}=\frac{6.4}{1.8}=3.55 \mathrm{ft} \\
& 2<3.55<4, \text { O.K. }
\end{aligned}
$$

Step 4: Size the basin:
a. As shown in Figure 8E-1
b. Determine length of dissipating pool, Ls_{s} :
$\mathrm{L}_{\mathrm{s}}=10 \mathrm{~h}_{\mathrm{S}}=10(6.4)=64 \mathrm{ft}$.
$\mathrm{L}_{s} \min .=3 \mathrm{~W}_{0}=3(8)=24 \mathrm{ft}$
Therefore, use $L_{s}=64 \mathrm{ft}$
c. Determine length of basin, L_{B} :
$L_{B}=15 h_{S}=15(6.4)=96 \mathrm{ft}$
$\mathrm{L}_{\mathrm{B}} \min .=4 \mathrm{~W}_{0}=4(8)=32 \mathrm{ft}$
Therefore, use $L_{B}=96 \mathrm{ft}$
d. Thickness of riprap:

Approach $=3 \mathrm{~d}_{50}=3(1.80)=5.4 \mathrm{ft}$
Remainder $=2 \mathrm{~d}_{50}=2(1.80)=3.6 \mathrm{ft}$
Step 5: \quad Determine V_{B} :
a. $d_{B}=$ Critical depth at basin exit $=3.30 \mathrm{ft}$. (assuming a rectangular cross section with width $\mathrm{W}_{\mathrm{B}}=24 \mathrm{ft}$.)
b. $\quad V_{B}=\frac{Q}{W_{B} d_{B}}=\frac{800}{24(3.3)}=10 \mathrm{fps}$
c. $\mathrm{V}_{\mathrm{B}}=10 \mathrm{fps}<\mathrm{V}_{\mathrm{d}}=18 \mathrm{fps}$

Appendix 8E-1

Energy Dissipation

8E.2.2 Riprap Design for High Tailwater Condition-Sample Problem

Given: Data on the channel and the culvert are the same as Sample Problem 1, except that the new tailwater depth,

TW $=4.2 \mathrm{ft}$.
$\frac{\text { TW }}{d_{o}}=\frac{4.2}{4.0}=1.05>0.75$
Downstream channel can tolerate only 7.0 fps
Steps 1 through 5 are the same as Sample Problem 8E.2.1.
Step 6: High tailwater design:
a. Design a basin for low tailwater conditions, Steps 1-5 as above:
$\mathrm{D}_{50}=1.8 \mathrm{ft}, \mathrm{h}_{\mathrm{S}}=6.4 \mathrm{ft}$
$L_{s}=64 \mathrm{ft}, \mathrm{L}_{\mathrm{B}}=96 \mathrm{ft}$
b. Compute equivalent circular diameter, D_{E}, for brink area from:
$\mathrm{A}=\frac{\pi \mathrm{D}_{\mathrm{E}}{ }^{2}}{4}=\mathrm{d}_{0}\left(\mathrm{~W}_{\mathrm{o}}\right)=4.0(8.0)=32 \mathrm{ft}^{2}$
$D_{E}=\sqrt{\frac{4 \mathrm{~A}}{\pi}}=\sqrt{\frac{4(32)}{\pi}}=6.4 \mathrm{ft}$.
$\mathrm{V}_{0}=25 \mathrm{fps}$ (Sample Problem 8E.2.1).
c. Estimate centerline velocity at a series of downstream cross sections using Figure 8E-5.

$\frac{\mathrm{L}^{1}}{\mathrm{D}_{\mathrm{E}}}$	L	$\frac{\mathrm{V}_{\mathrm{L}}}{\mathrm{V}_{\mathrm{O}}}$	V_{L}	$\mathrm{D}_{50}{ }^{2}$
10	64	0.59	14.7	1.4
15^{3}	96	0.36	9.0	0.6
20	128	0.30	7.5	0.4
21	135	0.28	7.0	0.4

${ }^{1}$ Use $W_{o}=D_{E}$ in Figure 8E- 5.
${ }^{2}$ From Figure 8E- 6.
${ }^{3}$ Is on a logarithmic scale so interpolations must be performed logarithmically.
d. Size riprap using HEC 11. The channel can be lined with the same size rock used for the basin. Protection should extend at least 135 ft downstream.
This information is summarized in the worksheet for riprap basin design, Figure 8E-4.

Appendix 8E-1

design values (Figure 8E-2)	$\underset{1}{\text { TRIAL }}$	FINAL TRIAL
Equi. Depth. d_{E}	4.0 ft	4.0 ft
$\mathrm{D}_{5} / \mathrm{d}_{6}$	0.45	0.45
0_{0}	1.80 ft .	1.80 ft .
Froude No., Fr	2.20	2.20
h^{\prime} / d_{2}	1.60	1.60
h_{5}	6.90种	6.40ft.
$\mathrm{h}_{5} \mathrm{D}_{\infty}$	3.55	3.55
$2<h_{p} / D_{x}<4$	OK	OK

BASIN DIMENSIONS		FEET	
Pool length is the larger of:	10hs	64	64
	$3 W_{0}$	24	
Basin length is the larger of:	15ns	96	96
	4W。	32	
Approach Thickness	$3 \mathrm{D}_{5}$	5.4	
Basin Thickness	$2 \mathrm{D}_{50}$	3.6	

DOWNSTREAM RIPRAP (Figure 8E-4)				
$L D_{\mathrm{E}}$	L	$\mathrm{v}_{\mathrm{L}} \mathrm{N}_{\mathrm{t}}$	V_{L}	$\mathrm{D}_{\boldsymbol{*}}$
10	64	0.59	14,7	1.4
15	96	0.37	9.0	0.6
20	128	0.30	7.5	0.4
21	135	0.28	7.0	0.4

Figure 8E- 4. Riprap Basin Design Worksheet, Sample Problem

Figure XI - 3 Distribution of Centerline Velocity for Flow from Submerged Outets from Reference XI - 2. to be used for Predicting Channel Volocities Downstream from Culvert Outlet where High Tailwater prevaile. Velocities obtained from the use of this Chart can be uned with Figure 2 of HEC Na. 11 for sizing riprap (DO not use Figure 1 HEC No. 11, use Mean Velocity Values)

Figure 8E-5. Distribution of Centerline Velocity for Flow from Submerged Outlets

Appendix 8E-1

Figure 8E- 6. Riprap Size Versus Exit Velocity

Appendix 8E-1
Energy Dissipation

8E.2.3 Computer Output

The dissipator geometry can be computed using the "Energy Dissipator" module, which is available in FHWA's HY8, Culvert Analysis microcomputer program. The output of the culvert data, channel input data, and computed geometry using this module are shown below.

FHWA CULVERT ANALYSIS, HY-8, VERSION 6.0

CURRENT DATE	CURRENT TIME	FILE NAME	FILE DATE
06-02-1997	$15: 23: 59$	ENERGY3	$06-02-1997$

CULVERT NO. 1
CULVERT TYPE: 8.0 ft X 6.0 ft , BOX
CULVERT LENGTH $=300 \mathrm{ft}$
NO. OF BARRELS = 1.0
FLOW PER BARREL= 400 cfs
INVERT ELEVATION $=172.5 \mathrm{ft}$
OUTLET VELOCITY = 25 fps
OUTLET DEPTH $=4.0 \mathrm{ft}$

DOWNSTREAM CHANNEL CHANNEL TYPE: IRREGULAR BOTTOM WIDTH $=8.0 \mathrm{ft}$ TAILWATER DEPTH $=2.8 \mathrm{ft}$ TOTAL DESIGN FLOW = 400 cfs BOTTOM ELEVATION $=172.5 \mathrm{ft}$ NORMAL VELOCITY $=32 \mathrm{fps}$

RIPRAP STILLING BASIN - FINAL DESIGN

THE LENGTH OF THE BASIN $\quad=96.3 \mathrm{ft}$
THE LENGTH OF THE POOL $\quad=64.2 \mathrm{ft}$
THE LENGTH OF THE APRON $\quad=32 \mathrm{ft}$
THE WIDTH OF THE BASIN AT THE OUTLET $=8.0 \mathrm{ft}$
THE DEPTH OF POOL BELOW CULVERT INVERT $=6.4 \mathrm{ft}$
THE THICKNESS OF THE RIPRAP ON THE APRON $\quad=6.6 \mathrm{ft}$
THE THICKNESS OF THE RIPRAP ON THE REST OF THE BASIN $=5.0 \mathrm{ft}$
THE BASIN OUTLET VELOCITY $=17 \mathrm{fps}$
THE DEPTH OF FLOW AT BASIN OUTLET $\quad=6.0 \mathrm{ft}$

