CURVE WIDENING TABLES

SU DESIGN VEHICLE

COMPONENT	SIZE
OVERALL WIDTH (u)	8.0 ft
WHEELBASE (L)	20 ft
FRONT OVERHANG (A)	4 ft

LATERAL CLEARANCE

LANE WIDTH	CLEARANCE (C)
9 ft	1.5 ft
10 ft	2 ft
11 ft	2.5 ft
12 ft	3 ft
16 ft	5 ft

ADJUSTMENT FACTORS

NUMBER OF LANES ROTATED	ADJUSTMENT FACTOR (bw)
1	1.00
1.5	0.8333
2	0.75
2.5	0.70
3	0.6667
3.5	0.6425

RELATIVE GRADIENTS

DESIGN SPEED VD MPH	MAXIMUM RELATIVE GRADIENT (rg)	MIN. TRANSITION LENGTH IN FEET RURAL CONDITIONS WITH PAVEMENT WIDENING AND REVERSE CURVES FOR ALL CONDITIONS (2 SECOND RULE)
20	0.74	59
25	0.70	74
30	0.66	88
35	0.62	103
40	0.58	117
45	0.54	132
50	0.50	147
55	0.47	161
60	0.45	176
65	0.43	191
70	0.40	205

- A FRONT OVERHANG OF DESIGN VEHICLE FROM APPROPRIATE TABLE.
- bw ADJUSTMENT FACTOR FROM TABLE.
- C LATERAL CLEARANCE OF DESIGN VEHICLE FROM APPROPRIATE TABLE.
- E SUPERELEVATION RATE FROM APPROPRIATE TABLE.
- F_A CALCULATED WIDTH OF OVERHANG FOR DESIGN VEHICLE.
- L WHEELBASE OF DESIGN VEHICLE FROM APPROPRIATE TABLE.
- Lr LENGTH OF SUPERELEVATION RUNOFF SECTION.

DEFINITIONS

- Lt LENGTH OF TANGENT RUNOUT SECTION
- M MULTIPLE LANE FACTOR.
- N NUMBER OF LANES.
- $\rm n_1$ NUMBER OF LANES ROTATED (FROM TABLES).
- Pw PAVEMENT WIDTH.
- R RADIUS OF CURVE.
- rg RELATIVE GRADIENT FROM APPROPRIATE TABLE.
- U CALCULATED TRACK WIDTH OF DESIGN VEHICLE.

- u TRACK WIDTH OF DESIGN VEHICLE FROM APPROPRIATE TABLE.
- V_{D} DESIGN VELOCITY.
- w CALCULATED WIDENING.
- W PAVEMENT WIDTH
- W_C CALCULATED TOTAL CURVE WIDTH.
- Wn WIDTH OF LANE.
- Z CALCULATED EXTRA WIDTH ALLOWANCE.

GENERAL DESIGN CONSIDERATIONS

- WHERE PAVEMENT WIDENING IS REQUIRED, THE APPROPRIATE WIDENING IS ADDED TO THE LANE WIDTH WHEN CALCULATING THE SUPERELEVATION RUNOFF LENGTH (Lr).
- 2. THE COMPUTED SUPERELEVATION RUNOFF LENGTH (Lr) IS ROUNDED UP TO THE NEAREST FOOT.
- 3. WHEN THE SUPERELEVATION RUNOFF LENGTH (Lr) IS CALCULATED, IT MUST BE COMPARED WITH THE MINIMUM VALUE LISTED IN THE APPROPRIATE COLUMN ON THE RELATIVE GRADIENT TABLE.
- 4. TANGENT RUNOUT (Lt) IS ALWAYS ACHIEVED OUTSIDE OF THE SUPERELEVATION RUNOFF SECTION (Lr).
- 5. NO PAVEMENT WIDENING IS REQUIRED FOR URBAN ROADWAYS.
- 6. NO PAVEMENT WIDENING IS REQUIRED FOR RURAL ROADWAYS WITH A CURVE RADIUS GREATER THAN 2865 FEET.

- 7. NO PAVEMENT WIDENING IS REQUIRED FOR RURAL ROADWAYS WITH 12 FOOT WIDE LANES AND A CURVE RADIUS GREATER THAN 881 FEET.
- 8. PAVEMENT WIDENING IS APPLIED ONLY WHEN CALCULATED WIDENING (w) IS EQUAL TO OR GREATER THAN 2 FEET.
- 9. WHEN CALCULATING WIDENING (W) FOR MULTI-LANE RURAL ROADWAYS, WIDENING IS FIRST CALCULATED USING THE SINGLE LANE WIDTH FOR "W".
- 10. AN ALTERNATE METHOD FOR MULTI-LANE UNDIVIDED PAVEMENTS (48'). THE Lr IS 1.5 TIMES (M-1.5) THE CORRESPONDING LENGTH FOR TWO LANE HIGHWAYS; AND FOR SIX LANE UNDIVIDED PAVEMENTS (72'), THE Lr IS TWO TIMES (M-2) THE CORRESPONDING LENGTH FOR TWO LANE HIGHWAYS.
- 11. CALCULATED WIDENING IS ROUNDED UP TO THE NEAREST 0.1 FOOT.
- 12. CURVES WITH SPIRAL CURVE TRANSITIONS MUST HAVE A MINIMUM SUPERELEVATION RUNOFF LENGTH (Lr) EQUAL TO 2 SECONDS OF TRAVEL TIME AT THE ROADWAY'S DESIGN SPEED AS NOTED IN THE RELATIVE GRADIENT TABLE.

NO WIDENING REQUIRED FORMULAS USED TO CALCULATE SUPERELEVATION RUNOFF (Lr) AND WIDENING (W)

 $Lr = b_w(W_n E/rg)$

Lr = M(WE/rg) (ALT. MULTI-LANE)

WIDENING REQUIRED

 $Lr = b_w[E n_1(W_n + w/N)/rg]$ Lr = m[E(W + w/N)/rg] (ALT. MULTI-LANE) $U = u + R - \sqrt{R^2 - L^2}$

 $F_A = \sqrt{R^2 + A(2L + A)} - R$

 $Z = (V_D / \sqrt{R})$

 $W = W_C - 2W_n$

 $W_C = N(U + C) + F_A + Z$

FOR SOLVED PROBLEMS USING THIS METHODOLOGY, SEE THE EXAMPLES ON PAGE 802.23

METHODOLOGIES FOR CALCULATING TC-5.01 VALUES

REV. 1/07 802.22

VIRGINIA DEPARTMENT OF TRANSPORTATION