Law of sines	$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin c}$
Law of cosines	$a^{2}=b^{2}+c^{2}-2 b c \cos A$
	$b^{2}=a^{2}+c^{2}-2 a c \cos B$
	$c^{2}=a^{2}+b^{2}-2 a b \cos C$
Law of tangents	$\frac{a-b}{a+b}=\frac{\tan 1 / 2(A-B)}{\tan 1 / 2(A+B)}$

Find	Given	Formula
A	BC	$180^{\circ}-(B+C)$
$\sin A$	acc	$\frac{a x \sin c}{c}$
$\sin A$	abB	$\frac{a \times \sin B}{b}$
$\cos \mathrm{A}$	abc	$\frac{b^{2}+c^{2}-a^{2}}{2 b c}$
$\tan \mathrm{A}$	acb	$\frac{a x \sin B}{C-(a \times \cos B)}$
$\tan \mathrm{A}$	abc	$\frac{a x \sin C}{b-(a \times \cos C)}$
B	AC	$180^{\circ}-(A+C)$
$\sin B$	$a b A$	$\frac{b \times \sin A}{a}$
$\sin B$	bcc	$\frac{b \times \sin c}{c}$
$\cos \mathrm{B}$	$a b c$	$\frac{c^{2}+a^{2}-b^{2}}{2 a c}$
$\tan B$	bcA	$\frac{b x \sin A}{c-(b x \cos A)}$
c	AB	$180^{\circ}-(A+B)$
$\sin C$	$a \subset A$	$\frac{c x \sin A}{a}$

Find	Given	Formula
$\sin C$	bcB	$\frac{C x \sin B}{b}$
$\cos \mathrm{C}$	$a b c$	$\frac{a^{2}+b^{2}-c^{2}}{2 a b}$
$\tan \mathrm{C}$	bca	$\frac{c x \sin A}{b-(c x \cos A)}$
$\tan C$	acB	$\frac{C x \sin B}{a-(C x \cos B)}$
a	CAC	$\frac{C x \sin A}{\sin C}$
a	bab	$\frac{b x \sin A}{\sin B}$
a	bcA	$\sqrt{b^{2}+c^{2}-(2 b c \times \cos A)}$
b	aAB	$\frac{a x \sin B}{\sin A}$
b	CBC	$\frac{C x \sin B}{\sin C}$
b	$a C B$	$\sqrt{a^{2}+c^{2}-(2 b c \times \cos B)}$
c	aAC	$\frac{a x \sin C}{\sin A}$
c	bBC	$\frac{b x \sin C}{\sin B}$
c	abc	$\sqrt{a^{2}+b^{2}-(2 a b \times \cos C)}$

