TC-5.11

ADJUSTMENT FACTORS

NUMBER OF LANES ROTATED	ADJUSTMENT FACTOR (bw)		
1	1.00		
1.5	0.8333		
2	0.75		
2.5	0.70		
3	0.6667		
3.5	0.6425		

RELATIVE GRADIENTS

DESIGN RELATIV		MIN. TRANSITION LENGTH IN FEET RURAL CONDITIONS WITH PAVEMENT WIDENING AND REVERSE CURVES FOR ALL CONDITIONS	MAXIMUM RELATIVE GRADIENT (rg) RAMPS AND LOOPS		
	IZ. LANE	(2 SECOND RULE)	16' LANE	18' LANE	24' LANE
20	0.74	59	0.84	0.89	0.99
25	0.70	74	0.80	0.84	0.93
30	0.66	88	0.75	0.80	0.88
35	0.62	103	0.71	0.75	0.83
40	0.58	117	0.66	0.70	0.77
45	0.54	132	0.61	0.65	0.72
50	0.50	147	0.57	0.60	0.67
55	0.47	161	0.54	0.57	0.63
60	0.45	176	0.51	0.54	0.60
65	0.43	191	0.49	0.52	0.57
70	0.40	205	0.45	0.48	0.53
75	0.38	220	0.43	0.46	0.51
80	0.35	235	0.39	0.42	0.47

DEFINITIONS

A - FRONT OVERHANG OF DESIGN VEHICLE FROM APPROPRIATE TABLE.

bw - ADJUSTMENT FACTOR FROM TABLE.

 C - LATERAL CLEARANCE OF DESIGN VEHICLE FROM APPROPRIATE TABLE.

E - SUPERELEVATION RATE FROM APPROPRIATE TABLE.

ed - DESIGN SUPERELEVATION RATE, PERCENT

e NC - NORMAL CROSS SLOPE RATE, PERCENT

A - CALCULATED WIDTH OF OVERHANG FOR DESIGN VEHICLE.

L - WHEELBASE OF DESIGN VEHICLE FROM APPROPRIATE TABLE.

Lr - LENGTH OF SUPERELEVATION RUNOFF SECTION.

Lt - LENGTH OF TANGENT RUNOUT SECTION

M - MULTIPLE LANE FACTOR.

N - NUMBER OF LANES.

n₁- NUMBER OF LANES ROTATED (FROM TABLES).

Pw - PAVEMENT WIDTH.

R - RADIUS OF CURVE.

rg - RELATIVE GRADIENT FROM APPROPRIATE TABLE.

U - CALCULATED TRACK WIDTH OF DESIGN VEHICLE.

u - TRACK WIDTH OF DESIGN VEHICLE FROM APPROPRIATE TABLE.

 V_{D} - DESIGN VELOCITY.

w - CALCULATED WIDENING.

W - PAVEMENT WIDTH

W_C - CALCULATED TOTAL CURVE WIDTH.

Wn - WIDTH OF LANE.

Z - CALCULATED EXTRA WIDTH ALLOWANCE.

FORMULAS USED TO CALCULATE SUPERELEVATION RUNOFF (Lr) AND CROWN RUNOUT (Lt)

NO WIDENING REQUIRED

 $Lr = b_w (W_n n_1 E/rg)$

 $Lr = M(W_0 E/rg)$ (ALT. MULTI-LANE)

WIDENING REQUIRED

Lr=bw[E n; (Wn +w/N)/rg]

 $Lr = M[E(W_n + w/N)/rg]$ (ALT. MULTI-LANE)

 $L_{t} = \left(\frac{e_{NC}}{e_{d}}\right) Lr$

FOR SOLVED PROBLEMS USING THIS METHODOLOGY FOR Lr, SEE THE EXAMPLES ON PAGE 803.22

NOTE: AN ALTERNATE METHOD FOR MULTI-LANE ROADWAYS. FOR FOUR LANE UNDIVIDED PAVEMENTS (48") THE LIS 1.5 TIMES (M-1.5) THE CORRESPONDING LENGTH FOR TWO LANE HIGHWAYS: AND FOR SIX LANE UNDIVIDED PAVEMENTS (72"), THE LIS TWO TIMES (M-2) THE CORRESPONDING LENGTH FOR TWO LANE HIGHWAYS

 \mathbf{V} DOT

ROAD AND BRIDGE STANDARDS

SHEET 1 OF 1 REVISION DATE 01/14

METHODOLOGIES FOR CALCULATING TC-5.11 VALUES

SPECIFICATION REFERENCE

VIRGINIA DEPARTMENT OF TRANSPORTATION